Cookies Notification

We use cookies to improve your website experience. To learn about our use of cookies and how you can manage your cookie settings, please see our Cookie Policy.
×

Bioprospection of native psychrotolerant plant-growth-promoting rhizobacteria from Peruvian Andean Plateau soils associated with Chenopodium quinoa

Publication: Canadian Journal of Microbiology
23 June 2020

Abstract

The Peruvian Andean Plateau, one of the main production areas of native varieties of Chenopodium quinoa, is exposed to abrupt decreases in environmental temperature, affecting crop production. Plant-growth-promoting rhizobacteria that tolerate low temperatures could be used as organic biofertilizers in this region. We aimed to bioprospect the native psychrotolerant bacteria of the quinoa rhizosphere in this region that show plant-growth-promoting traits. Fifty-one strains belonging to the quinoa rhizosphere were characterised; 73% of the total could grow at low temperatures (4, 6, and 15 °C), whose genetic diversity based on DNA amplification of interspersed repetitive elements (BOX) showed 12 different profiles. According to the 16S rRNA sequence, bacterial species belonging to the classes Beta- and Gammaproteobacteria were identified. Only three (6%) isolates identified as nonpathogenic bacteria exhibited plant-growth-promoting activities, like IAA production, phosphate solubilization, growth in a nitrogen-free medium, and ACC deaminase production at 6 and 15 °C. ILQ215 (Pseudomonas silesiensis) and JUQ307 (Pseudomonas plecoglossicida) strains showed significantly positive plant growth effects in aerial length (about 50%), radicular length (112% and 79%, respectively), and aerial and radicular mass (above 170% and 210%, respectively) of quinoa plants compared with the control without bacteria. These results indicate the potential of both psychrotolerant strains to be used as potential organic biofertilizers for quinoa in this region.

Résumé

Le plateau andin péruvien est l’une des principales zones de production de variétés indigènes de Chenopodium quinoa. Cette région est exposée à des chutes abruptes de la température ambiante qui affectent la production des cultures. Selon ce scénario, les rhizobactéries qui favorisent la croissance des plantes (RFCP) qui tolèrent de basses températures pourraient être utilisées comme biofertilisants organiques pour l’agriculture dans cette région. Les objectifs de cette étude consistaient à réaliser une bioprospection des bactéries indigènes psychrotolérantes de la rhizosphère du quinoa dans cette région qui présentent des caractéristiques favorisant la croissance des plantes. Cinquante et une souches appartenant à la rhizosphère du quinoa ont été caractérisées; 73 % du total étaient capables de croître à basse température (4, 6 et 15 °C), dont la diversité génétique basée sur l’amplification d’éléments répétitifs dispersés d’ADN (BOX) a montré 12 profils différents. Selon la séquence de l’ARNr 16S, des espèces bactériennes appartenant aux classes des bêta- et gamma-protéobactéries ont été identifiées. Seulement trois (6 %) de tous les isolats identifiés comme bactéries non pathogènes montraient des activités FCP comme la production d’AIA, la solubilisation du phosphate, la croissance dans un milieu sans azote et la production d’ACC désaminase aux températures testées (6 et 15 °C). Deux d’entre eux : ILQ215 (Pseudomonas silesiensis) et JUQ307 (Pseudomonas plecoglossicida) exerçaient un effet significativement positif sur la croissance des plantes quant à la longueur aérienne (environ 50 %) et radiculaire (112 et 79 % respectivement), et au poids aérien et radiculaire (plus de 170 % et 210 %, respectivement) des plants de quinoa, comparativement au témoin sans bactéries. Ces résultats indiquent le potentiel des deux souches psychrotolérantes à être utilisées comme biofertilisants organiques éventuels du quinoa dans cette région. [Traduit par la Rédaction]

Get full access to this article

View all available purchase options and get full access to this article.

References

Abugoch L.E., Romero N., Tapia C.A., Silva J., and Rivera M. 2008. Study of some physicochemical and functional properties of quinoa (Chenopodium Quinoa Willd) protein isolates. J. Agric. Food Chem. 56(12): 4745–4750.
Altschul S.F., Gish W., Miller W., Myers E.W., and Lipman D.J. 1990. Basic local alignment search tool. J. Mol. Biol. 215(3): 403–410.
Andrade, M.F., Moreno, I., Calle, J.M., Ticona, L., Blacutt, L., Lavado-Casimiro, W. et al. 2018. Atlas – Clima y eventos extremos del Altiplano Central perú-boliviano/Climate and extreme events from the Central Altiplano of Peru and Bolivia 1981–2010. Geographica Bernensia.
Anwar M.S., Paliwal A., Firdous N., Verma A., Kumar A., and Pande V. 2019. Co-culture development and bioformulation efficacy of psychrotrophic PGPRs to promote growth and development of pea (Pisum sativum) plant. J. Gen. Appl. Microbiol. 65(2): 88–95.
Balcazar W., Rondón J., Rengifo M., Ball M.M., Melfo A., Gómez W., et al. 2015. Bioprospecting glacial ice for plant growth promoting bacteria. Microbiol. Res. 177: 1–7.
Belimov A., Dodd I., Safronova V., Hontzeas N., and Davies W. 2007. Pseudomonas brassicacearum strain Am3 containing 1-aminocyclopropane-1-carboxylate deaminase can show both pathogenic and growth-promoting properties in its interaction with tomato. J. Exp. Bot. 58(6): 1485–1495.
Calvo P. and Zúñiga D. 2010. Caracterización fisiológica de cepas de Bacillus spp. aisladas de la rizósfera de papa (Solanum tuberosum). Ecología Aplicada, 9(1–2): 31–39.
Catara V. 2007. Pseudomonas corrugata: plant pathogen and/or biological resource? Mol. Plant. Pathol. 8(3): 233–244.
Cheng Z., Park E., and Glick B.R. 2007. 1-Aminocyclopropane-1-carboxylate deaminase from Pseudomonas putida UW4 facilitate the growth of canola in the presence of sat. Can. J. Microbiol. 53(7): 912–918.
Cheng Z., Woody O.Z., McConkey B.J., and Glick B.R. 2012. Combined effects of the plant growth-promoting bacterium Pseudomonas putida UW4 and salinity stress on the Brassica napus proteome. Appl. Soil. Ecol. 61: 255–263.
Chung B.S., Aslam Z., Kim S.W., Kim G.G., Kang H.S., Ahn J.W., et al. 2008. A bacterial endophyte, Pseudomonas brassicacearum YC5480, isolated from the root of Artemisia sp. producing antifungal and phytotoxic compounds. Plant Pathol. J. 24(4): 461–468.
Das K., Katiyar V., and Goel R. 2003. ‘P’ solubilization potential of plant growth promoting Pseudomonas mutants at low temperature. Microbiol. Res. 158(4): 359–362.
Dharni S., Srivastava A.K., Samad A., and Patra D.D. 2014. Impact of plant growth promoting Pseudomonas monteilii PsF84 and Pseudomonas plecoglossicida PsF610 on metal uptake and production of secondary metabolite (monoterpenes) by rose-scented geranium (Pelargonium graveolens cv. bourbon) grown on tannery slud. Chemosphere, 117(1): 433–439.
Döbereiner, J., and Pedrosa, F.O. 1987. Nitrogen-fixing bacteria in nonleguminous crop plants. In Brock/Springer Series in Contemporary Biosciences. Edited by T.D. Brock. Science Tech Publishers, Madison, Wisc., USA.
Dworkin M. and Foster J.W. 1958. Experiments with some microorganisms which utilize ethane and hydrogen. J. Bacteriol. 75(5): 592–603.
Glick B.R. 2014. Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiol. Res. 169(1): 30–39.
Gómez, L., and Aguilar, E. 2016. Guía de cultivo de la quinua. Universidad Nacional Agraria La Molina, 2nd ed. FAO y Universidad Nacional Agraria La Molina, Lima. Available from http://www.fao.org/3/a-i5374s.pdf [accessed 17 January 2020].
Gordon S. and Weber R. 1951. Colorimetric estimation of indoleacetic acid. Plant Physiol. 26(1): 192–195.
Hong S., Lee C., and Jang S.H. 2012. Purification and properties of an extracellular esterase from a cold-adapted Pseudomonas mandelii. Biotechnol. Lett. 34(6): 1051–1055.
Ivanova E.P., Christen R., Bizet C., Clermont D., Motreff L., Bouchier C., et al. 2009. Pseudomonas brassicacearum subsp. neoaurantiaca subsp. nov., orange-pigmented bacteria isolated from soil and the rhizosphere of agricultural plants. Int. J. Syst. Evol. Microbiol. 59(10): 2476–2481.
Jha B.K., Gandhi Pragash M., Cletus J., Raman G., and Sakthivel N. 2009. Simultaneous phosphate solubilization potential and antifungal activity of new fluorescent pseudomonad strains, Pseudomonas aeruginosa, P. plecoglossicida and P. mosselii. World J. Microbiol. Biotechnol. 25(4): 573–581.
Josine T.L., Ji J., Wang G., and Guan C.F. 2011. Advances in genetic engineering for plants abiotic stress control. Afr. J. Biotechnol. 10(28): 5402–5413. Available from https://www.ajol.info/index.php/ajb/article/view/94312/83693 [accessed 17 January 2020].
Kaminski M.A., Furmanczyk E.M., Sobczak A., Dziembowski A., and Lipinski L. 2018. Pseudomonas silesiensis sp. nov. strain A3T isolated from a biological pesticide sewage treatment plant and analysis of the complete genome sequence. Syst. Appl. Microbiol. 41(1): 13–22.
Kandasamy P., Chaturvedi N., Sisodia B.S., Shasany A.K., Gahoi S., Marla S.S., et al. 2013. Expression of CspE by a psychrotrophic bacterium Enterobacter ludwigii PAS1, isolated from Indian Himalayan soil and in silico protein modelling, prediction of conserved residues and active sites. Curr. Microbiol. 66(5): 507–514.
Katoh K. and Standley D.M. 2013. MAFFT Multiple Sequence Alignment Software Version 7: improvements in performance and usability. Mol. Biol. Evol. 30(4): 772–780.
Kumar Meena R., Kumar Singh R., Pal Singh N., Kumari Meena S., and Singh Meena V. 2015. Isolation of low temperature surviving plant growth–promoting rhizobacteria (PGPR) from pea (Pisum sativum L.) and documentation of their plant growth promoting traits. Biocatal. Agric. Biotechnol. 4(4): 806–811.
Li H.B., Singh R.K., Singh P., Song Q.-Q., Xing Y.-X., Yang L.-T., et al. 2017. Genetic diversity of nitrogen-fixing and plant growth promoting Pseudomonas species isolated from sugarcane rhizosphere. Front. Microbiol. 8: 1–20.
Louden B.C., Haarmann D., and Lynne A.M. 2011. Use of blue agar CAS assay for siderophore detection. J. Microbiol. Biol. Educ. 12(1): 51–53.
Mandryk-Litvinkovich M.N., Muratova A.A., Nosonova T.L., Evdokimova O.V., Valentovich L.N., Titok M.A., et al. 2017. Molecular genetic analysis of determinants defining synthesis of 2,4-diacetylphloroglucinol by Pseudomonas brassicacearum BIM B-446 bacteria. Appl. Biochem. Microbiol. 53(1): 31–39.
Martina P., Bettiol M., Vescina C., Montanaro P., Mannino M.C., Prieto C.I., et al. 2013. Genetic diversity of Burkholderia contaminans isolates from cystic fibrosis patients in Argentina. J. Clin. Microbiol. 51(1): 339–344.
McInroy J.A. and Kloepper J.W. 1995. Population dynamics of endophytic bacteria in field-grown sweet corn and cotton. Can. J. Microbiol. 41(10): 895–901.
Meyer J.-M., Geoffroy V.A., Baida N., Gardan L., Izard D., Lemanceau P., et al. 2002. Siderophore typing, a powerful tool for the identification of fluorescent and nonfluorescent pseudomonads. Appl. Environ. Microbiol. 68(6): 2745–2753.
Mishra P.K., Mishra S., Selvakumar G., Bisht S.C., Bisht J.K., Kundu S., et al. 2008. Characterisation of a psychrotolerant plant growth promoting Pseudomonas sp. strain PGERs17 (MTCC 9000) isolated from North Western Indian Himalayas. Ann. Microbiol. 58(4): 561–568.
Mishra P., Bisht S., Ruwari P., Selvakumar G., Joshi G., Bisht J., et al. 2011. Alleviation of cold stress in inoculated wheat (Triticum aestivum L.) seedlings with psychrotolerant pseudomonads from NW Himalayas. Arch. Microbiol. 193(7): 497–513.
Morales-García, Y., Juárez-Hernández, D., Aragón-Hernández, C., Mascarua-Esparza, M., Bustillos-Cristales, M., Fuentes-Ramírez, L. et al. 2011. Growth response of maize plantlets inoculated with. Rev. Argent. Microbiol. 43: 287–293. Retrieved from https://www.redalyc.org/articulo.oa?id=213021188009.
Morita R.Y. 1975. Psychrophilic bacteria. Bacteriol. Rev. 39(2): 144–167.
Morita, R.Y., and Moyer, C.L. 2001. Psychrophiles, origin of. Vol. 4. In Encyclopedia of biodiversity. Edited by S.A. Levin. pp. 917–924. Elsevier.
Moyer, C.L., Eric Collins, R., and Morita, R.Y. 2017. Psychrophiles and psychrotrophs. In Reference module in life sciences. Elsevier. pp. 1–6.
Nandi M., Berry C., Brassinga A.K.C., Belmonte M.F., Fernando W.G.D., Loewen P.C., et al. 2016. Pseudomonas brassicacearum strain DF41 kills Caenorhabditis elegans through biofilm-dependent and biofilm-independent mechanisms. Appl. Environ. Microbiol. 82(23): 6889–6898.
Nautiyal C. 1999. An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiol. Lett. 170(1): 265–270.
Nishimori E., Kita-Tsukamoto K., and Wakabayashi H. 2000. Pseudomonas plecoglossicida sp. nov., the causative agent of bacterial haemorrhagic ascites of ayu, Plecoglossus altivelis. Int. J. Syst. Evol. Microbiol. 50(1): 83–89.
Odoh C. 2017. Plant growth promoting rhizobacteria (PGPR): a bioprotectant bioinoculant for sustainable agrobiology. A review. Int. J. Adv. Res. Biol. Sci. (IJARBS). 4(5): 123–142.
Ogata-Gutiérrez K., Alvarado D., Chumpitaz-Segovia C., and Zúñiga-Dávila D. 2016. Characterization of plant growth promoting rhizobacteria isolated from the rhizosphere of Peruvian Highlands native crops. Int. J. Plant Soil Sci. 11(1): 1–8.
Ortiz-Ojeda P., Ogata-Gutiérrez K., and Zúñiga-Dávila D. 2017. Evaluation of plant growth promoting activity and heavy metal tolerance of psychrotrophic bacteria associated with maca (Lepidium meyenii Walp.) rhizosphere. AIMS Microbiol. 3(2): 279–292.
Pandey A., Palni L.M.S., Mulkalwar P., and Nadeem M. 2002. Effect of temperature on solubilization of tricalcium phosphate by Pseudomonas corrugata. J. Sci. Ind. Res. 61(6): 457–460. Available from http://nopr.niscair.res.in/handle/123456789/26363 [accessed 17 January 2020].
Pellegrino F.L.P.C., Vieira V.V., Baio P.V.P., dos Santos R.M.R., dos Santos A.L.A., de Barros Santos N.G.M., et al. 2011. Acinetobacter soli as a cause of bloodstream infection in a neonatal intensive care unit: Table 1. J. Clin. Microbiol. 49(6): 2283–2285.
Penrose D.M. and Glick B.R. 2003. Methods for isolating and characterizing ACC deaminase-containing plant growth-promoting rhizobacteria. Physiol. Plant. 118(1): 10–15.
Przemieniecki S.W., Kurowski T.P., Korzekwa K., and Karwowska A. 2014. The effect of psychrotrophic bacteria isolated from the root zone of winter wheat on selected biotic and abiotic factors. J. Plant Prot. Res. 54(4): 407–413.
Rahmoune B., Morsli A., Khelifi-Slaoui M., Khelifi L., Strueh A., Erban A., et al. 2017. Isolation and characterization of three new PGPR and their effects on the growth of Arabidopsis and Datura plants. J. Plant Prot. Res. 12(1): 1–6.
Robertson, G., and Grandy, A. 2006. Soil system management in temperate regions. In Biological approaches to sustainable soil systems. Edited by N. Uphoff, A. Ball, E. Fernandes, H. Herren, O. Husson, M. Laing et al. CRC Press, Boca Raton, Fla. pp. 27–39.
Rondón J.J., Ball M.M., Castro L.T., and Yarzábal L.A. 2019. Eurypsychrophilic Pseudomonas spp. isolated from Venezuelan tropical glaciers as promoters of wheat growth and biocontrol agents of plant pathogens at low temperatures. Environ. Sustain. 2(3): 265–275.
Selvakumar G., Joshi P., Nazim S., Mishra P.K., Bisht J.K., and Gupta H.S. 2009. Phosphate solubilization and growth promotion by Pseudomonas fragi CS11RH1 (MTCC 8984), a psychrotolerant bacterium isolated from a high altitude Himalayan rhizosphere. Biologia, 64(2): 239–245.
Snyder, R., and Melo-Abreu, J. 2010. Protección contra las heladas: fisiología y temperaturas críticas. Protección contra las heladas: fundamentos, práctica y economía. Vol. 1. FAO, Rome. Available from http://www.fao.org/3/y7223s/y7223s00.htm [accessed 17 January 2020].
Suzuki T., Nakayama T., Kurihara T., Nishino T., and Esaki N. 2002. Primary structure and catalytic properties of a cold-active esterase from a psychrotroph, Acinetobacter sp. strain no. 6. isolated from Siberian soil. Biosci. Biotechnol. Biochem. 66(8): 1682–1690.
Tena D. and Fernández C. 2015. Pseudomonas oryzihabitans: an unusual cause of skin and soft tissue infection. Infect. Dis. 47(11): 820–824.
Trivedi P. and Pandey A. 2007. Application of immobilized cells of Pseudomonas putida strain MTCC 6842 in alginate to solubilize phosphate in culture medium and soil. J. Plant Nutr. Soil Sci. 170(5): 629–631.
Trivedi, P., Pandey, A., and Palni, L.M.S. 2012. Bacteria in Agrobiology: plant probiotics. In Bacteria in agrobiology: plant probiotics. Vol. 9783642275. Edited by D.K. Maheshwari. Springer, Berlin, Heidelberg.
Versalovic J., Koeuth T., and Lupski R. 1991. Distribution of repetitive DNA sequences in eubacteria and application to fingerprinting of bacterial genomes. Nucleic Acids Res. 19(24): 6823–6831.
Versalovic J., Schneider M., de Bruijn F.J., and Lupski J. 1994. Genomic fingerprinting of bacteria using repetitive sequence-based polymerase chain reaction. Methods Mol. Cell Biol. 5: 25–40.
Watanabe K., Nelson J., Harayama S., and Kasai H. 2001. ICB database: the gyrB database for identification and classification of bacteria. Nucleic Acids. Res. 29(1): 344–345.
Weisburg W., Barns S., Pelletier D., and Lane D. 1991. 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 173(2): 697–703.
Woo K.-S., Choi J.-L., Kim B.-R., Kim J.-E., Kim K.-H., Kim J.-M., and Han J.-Y. 2014. Outbreak of Pseudomonas oryzihabitans pseudobacteremia related to contaminated equipment in an emergency room of a tertiary hospital in Korea. Infect. Chemother. 46(1): 42–44.
Yamamoto S., Kasai H., Arnold D.L., Jackson R.W., Vivian A., and Harayama S. 2000. Phylogeny of the genus Pseudomonas: intrageneric structure reconstructed from the nucleotide sequences of gyrB and rpoD genes. Microbiology, 146(10): 2385–2394.
Yarzábal L.A., Monserrate L., Buela L., and Chica E. 2018. Antarctic Pseudomonas spp. promote wheat germination and growth at low temperatures. Polar Biol. 41(11): 2343–2354.
Zakria M., Ohsako A., Saeki Y., Yamamoto A., and Akao S. 2008. Colonization and growth promotion characteristics of Enterobacter sp. and Herbaspirillum sp. on Brassica oleracea. Soil Sci. Plant Nutr. 54(4): 507–516.

Information & Authors

Information

Published In

cover image Canadian Journal of Microbiology
Canadian Journal of Microbiology
Volume 66Number 11November 2020
Pages: 641 - 652

History

Received: 20 January 2020
Revision received: 1 June 2020
Accepted: 8 June 2020
Accepted manuscript online: 23 June 2020
Version of record online: 23 June 2020

Notes

This paper is part of a Special issue arising from Rhizosphere 5: Shining light on the world beneath our feet, held 7–11 July 2019, Saskatoon, Saskatchewan, Canada.

Permissions

Request permissions for this article.

Key Words

  1. psychrotolerant
  2. low temperatures
  3. plant-growth-promoting rhizobacteria
  4. Chenopodium quinoa
  5. Peruvian Andean Plateau

Mots-clés

  1. psychrotolérant
  2. basses températures
  3. RFCP
  4. Chenopodium quinoa
  5. plateau andin péruvien

Authors

Affiliations

Carolina Chumpitaz-Segovia
Laboratorio de Ecología Microbiana y Biotecnología, Departamento de Biología, Facultad de Ciencias, Universidad Nacional Agraria La Molina, Av. La Molina S/N, 15024 La Molina, Lima, Peru.
Laboratorio de Microbiología Molecular y Biotecnología, Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Calle Germán Amézaga No. 375 - Edificio Jorge Basadre, Ciudad Universitaria, 15081, Lima, Peru.
Débora Alvarado
Laboratorio de Microbiología Molecular y Biotecnología, Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Calle Germán Amézaga No. 375 - Edificio Jorge Basadre, Ciudad Universitaria, 15081, Lima, Peru.
Katty Ogata-Gutiérrez
Laboratorio de Ecología Microbiana y Biotecnología, Departamento de Biología, Facultad de Ciencias, Universidad Nacional Agraria La Molina, Av. La Molina S/N, 15024 La Molina, Lima, Peru.
Doris Zúñiga-Dávila [email protected]
Laboratorio de Ecología Microbiana y Biotecnología, Departamento de Biología, Facultad de Ciencias, Universidad Nacional Agraria La Molina, Av. La Molina S/N, 15024 La Molina, Lima, Peru.

Notes

Copyright remains with the author(s) or their institution(s). Permission for reuse (free in most cases) can be obtained from copyright.com.

Metrics & Citations

Metrics

Other Metrics

Citations

Cite As

Export Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

1. Cold adapted Pseudomonas: ecology to biotechnology
2. Composition and diversity of root-inhabiting bacterial microbiota in the perennial sweet sorghum cultivar at the maturing stage
3. Potential of psychrotolerant rhizobacteria for the growth promotion of wheat ( Triticum aestivum L.)
4. Development of a cold-active microbial compound biofertilizer on the improvement for rice (oryza sativa L.) tolerance at low-temperature
5. A synthesis of functional contributions of rhizobacteria to growth promotion in diverse crops
6. Potential of mineral-solubilizing bacteria for physiology and growth promotion of Chenopodium quinoa Willd
7. Transcriptomic and Metabolomic Analysis of the Response of Quinoa Seedlings to Low Temperatures
8. Ecology and potential functions of plant-associated microbial communities in cold environments
9. Introduction to Special Issue from Rhizosphere 51
10. Advances of Biotechnology in Quinoa Production: A Global Perspective

View Options

Get Access

Login options

Check if you access through your login credentials or your institution to get full access on this article.

Subscribe

Click on the button below to subscribe to Canadian Journal of Microbiology

Purchase options

Purchase this article to get full access to it.

Restore your content access

Enter your email address to restore your content access:

Note: This functionality works only for purchases done as a guest. If you already have an account, log in to access the content to which you are entitled.

View options

PDF

View PDF

Full Text

View Full Text

Media

Media

Other

Tables

Share Options

Share

Share the article link

Share on social media