Cookies Notification

We use cookies to improve your website experience. To learn about our use of cookies and how you can manage your cookie settings, please see our Cookie Policy.
×

Comparative genomic analyses of β-lactamase (blaCMY-42)-encoding plasmids isolated from wastewater treatment plants in Canada

Publication: Canadian Journal of Microbiology
2 June 2021

Abstract

Wastewater treatment plants (WWTPs) are useful environments for investigating the occurrence, diversity, and evolution of plasmids encoding clinically relevant antibiotic resistance genes (ARGs). Our objective was to isolate and sequence plasmids encoding meropenem resistance from bacterial hosts within Canadian WWTPs. We used two enrichment culture approaches for primary plasmid isolation, followed by screening for antibiotic resistance, conjugative mobility, and stability in enteric bacteria. Isolated plasmids were sequenced using Illumina MiSeq and Sanger sequencing methods. Bioinformatics analyses resolved a multi-resistance IncF/MOBF12 plasmid, pFEMG (209 357 bp), harbouring resistance genes to β-lactam (blaCMY-42, blaTEM-1β, and blaNDM-5), macrolide (mphA-mrx-mphR), tetracycline (tetR-tetB-tetC-tetD), trimethoprim (dfrA12), aminoglycoside (aadA2), and sulfonamide (sul1) antibiotic classes. We also isolated an IncI1/MOBP12 plasmid pPIMR (172 280 bp) carrying similar β-lactamase and a small multi-drug efflux resistance gene cluster (blaCMY-42-blc-sugE) to pFEMG. The co-occurrence of different ARGs within a single 24 552 bp cluster in pFEMG — interspersed with transposons, insertion sequence elements, and a class 1 integron — may be of significant interest to human and veterinary medicine. Additionally, the presence of conjugative and plasmid maintenance genes in the studied plasmids corresponded to observed high conjugative transfer frequencies and stable maintenance. Extensive investigation is required to further understand the fitness trade-offs of plasmids with different types of conjugative transfer and maintenance modules.

Résumé

Les usines de traitement des eaux usées constituent des environnements utiles pour étudier la présence, la diversité et l’évolution des plasmides codant des gènes de résistance aux antibiotiques pertinents d’un point de vue clinique. L’objectif des auteurs consistait à isoler et à séquencer les plasmides codant la résistance au méropénem à partir d’hôtes bactériens dans des usines de traitement des eaux usées au Canada. Ils ont utilisé deux approches d’enrichissement des cultures pour l’isolement des plasmides principaux, suivi d’un dépistage de la résistance aux antibiotiques, de la mobilité conjugative et de la stabilité dans les bactéries entériques. Les plasmides isolés ont été séquencés par les méthodes de séquençage Illumina MiSeq et Sanger. Les analyses bio-informatiques ont permis de résoudre un plasmide de résistance multiple IncF/MOBF12, pFEMG (209 357 pb), comportant des gènes de résistance aux β-lactames (blaCMY-42, blaTEM-1β, et blaNDM-5), aux macrolides (mphA-mrx-mphR), à la tétracycline (tetR-tetB-tetC-tetD), au triméthoprime (dfrA12), aux aminoglycosides (aadA2) et aux sulfonamides (sul1). Ils ont aussi isolé un plasmide IncI1/MOBP12, pPIMR (172 280 pb), portant une β-lactamase et un petit groupe de gènes de résistance multiples par efflux (blaCMY-42-blc-sugE) similaire à pFEMG. La cooccurrence de différents gènes de résistance aux antibiotiques au sein d’une seule grappe de 24 552 pb dans pFEMG — entrecoupé de transposons, d’éléments de séquence d’insertion et d’un intégron de classe 1 — peut présenter un intérêt significatif en médecine humaine et vétérinaire. De plus, la présence de gènes de conjugaison et de maintenance de plasmides dans les plasmides étudiés correspond aux fréquences de transfert conjugatif élevées et à la maintenance stable observées. Des recherches approfondies sont nécessaires pour mieux comprendre les compromis de valeur sélective des plasmides ayant différents types de modules de transfert conjugatif et de maintenance. [Traduit par la Rédaction]

Get full access to this article

View all available purchase options and get full access to this article.

References

Ajayi, A.O. 2019. A study of antibiotic resistance plasmids in fresh produce and in wastewater environments using functional approaches, comparative genomics and abundance analysis. Ph.D. thesis, Department of Biology, University of Regina. Available from https://ourspace.uregina.ca/handle/10294/8977 [accessed 13 May 2021].
Alvarado A., Garcillán-Barcia M.P., and de la Cruz F. 2012. A degenerate primer MOB typing (DPMT) method to classify gamma-proteobacterial plasmids in clinical and environmental settings. PLoS ONE, 7(7): e40438.
Aziz R.K., Bartels D., Best A.A., DeJongh M., Disz T., Edwards R.A., et al. 2008. The RAST Server: rapid annotations using subsystems technology. BMC Genomics, 9: 75.
Bankevich A., Nurk S., Antipov D., Gurevich A.A., Dvorkin M., Kulikov A.S., et al. 2012. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19(5): 455–477.
Bennett P.M. 2008. Plasmid encoded antibiotic resistance: acquisition and transfer of antibiotic resistance genes in bacteria. Br. J. Pharmacol. 153: S347–S357.
Bortolaia V., Hansen K.H., Nielsen C.A., Fritsche T.R., and Guardabassi L. 2014. High diversity of plasmids harbouring blaCMY-2 among clinical Escherichia coli isolates from humans and companion animals in the upper Midwestern USA. J. Antimicrob. Chemother. 69: 1492–1496.
Cao G., Allard M.W., Hoffmann M., Monday S.R., Muruvanda T., Luo Y., et al. 2015. Complete sequences of six IncA/C plasmids of multidrug-resistant Salmonella enterica subsp. enterica serotype Newport. Genome Announc. 3(1): 15 e00027.
Carattoli A. 2009. Resistance plasmid families in Enterobacteriaceae. Antimicrob. Agents Chemother. 53(6): 2227–2238.
Carattoli A., Zankari E., Garcia-Fernandez A., Voldby Larsen M., Lund O., Villa L., et al. 2014. In silico detection and typing of plasmids using PlasmidFinder and plasmid multilocus sequence typing. Antimicrob. Agents Chemother. 58: 3895–3903.
Carattoli A., Villa L., Fortini D., and García-Fernández A. 2018. Contemporary IncI1 plasmids involved in the transmission and spread of antimicrobial resistance in Enterobacteriaceae. Plasmid. 5(18): 102392–102395.
Codjoe F.S. and Donkor E.S. 2017. Carbapenem resistance: A review. Med. Sci. (Basel), 6(1): 1.
Dagher C., Salloum T., Alousi S., Arabaghian H., Araj G.F., and Tokajian S. 2018. Molecular characterization of carbapenem resistant Escherichia coli recovered from a tertiary ospital in Lebanon. PLoS ONE, 13(9): e0203323.
Dmowski M., Gołębiewski M., and Kern-Zdanowicz I. 2018. Characteristics of the conjugative transfer system of the IncM plasmid pCTX-M3 and identification of its putative regulators. J. Bacteriol. 200(18): e00234-18.
Dolejska M., Villa L., Dobiasova H., Fortini D., Feudi C., and Carattoli A. 2013. Plasmid content of a clinically relevant Klebsiella pneumoniae clone from the Czech Republic producing CTX-M-15 and QnrB1. Antimicrob. Agents Chemother. 57(2): 1073–1076.
Fernandez-Lopez R., de Toro M., Moncalian G., Garcillan-Barcia M.P., and de la Cruz F. 2016. Comparative genomics of the conjugation region of F-like plasmids: Five shades of F. Front. Mol. Biosci. 3: 71.
Frost L.S. and Koraimann G. 2010. Regulation of bacterial conjugation: Balancing opportunity with adversity. Future Microbiol. 5: 1057–1071.
Garcillán-Barcia M.P., Francia M.V., and de la Cruz F. 2009. The diversity of conjugative relaxases and its application in plasmid classification. FEMS Microbiol. Rev. 33(3): 657–687.
Garcillán-Barcia M.P., Alvarado A., and de la Cruz F. 2011. Identification of bacterial plasmids based on mobility and plasmid population biology. FEMS Microbiol. Rev. 35(5): 936–956.
Gillings M.R. 2014. Integrons: past, present, and future. Microbiol. Mol. Biol. Rev. 78: 257–277.
Grant J.R. and Stothard P. 2008. The CGView server: a comparative genomics tool for circular genomes. Nucleic Acids Res. 36: 181–184.
Hentschke M., Kotsakis S.D., Wolters M., Heisig P., Miriagou V., and Aepfelbacher M. 2011. CMY-42, a novel plasmid-mediated CMY-2 variant AmpC beta-lactamase. Microb Drug Resist. 17(2): 165–169.
Hynes M.F., Simon R., and Puhler A. 1985. The development of plasmid-free strains of Agrobacterium-tumefaciens by using incompatibility with a Rhizobium-meliloti plasmid to eliminate pATC58. Plasmid, 13: 99–105.
Ingti B., Saikia P., Paul D., Maurya A.P., Dhar Chanda D., Chakravarty A., et al. 2018. Occurrence of blaCMY-42 on an IncI1 plasmid in multidrug-resistant Escherichia coli from a tertiary referral hospital in India. J. Glob. Antimicrob. Resist. 14: 78–82.
Kaplan E., Sela N., Doron-Faigenboim A., Navon-Venezia S., Jurkevitch E., and Cytryn E. 2015. Genomic and functional characterization of qnr-encoding plasmids from municipal wastewater biosolid Klebsiella pneumoniae isolates. Front Microbiol. 6: 1354.
Komano T., Yoshida T., Narahara K., and Furuya N. 2000. The transfer region of IncI1 plasmid R64: Similarities between R64 tra and legionella icm/dot genes. Mol. Microbiol. 35(6): 1348–1359.
Lachmayr K.L., Cavanaugh C.M., Kerkhof L.J., DiRienzo A.G., and Ford T.E. 2009. Quantifying nonspecific TEM β-lactamase (blaTEM) genes in a wastewater stream. Appl. Environ. Microbiol. 75: 203–211.
Li B., Hu Y., Wang Q., Yi Y., Woo P.C., Jing H., et al. 2013. Structural diversity of class 1 integrons and their associated gene cassettes in Klebsiella pneumoniae isolates from a hospital in China. PLoS ONE, 8(9): e75805.
Li J.-J., Spychala C.N., Hu F., Sheng J.-F., and Y. 2015. Complete nucleotide sequences of bla(CTX-M)-harboring IncF plasmids from community-associated Escherichia coli strains in the United State. Antimicrob. Agents Chemother. 59(6): 3002–3007.
Lu C.L., Chen K.-T., Huang S.-Y., and Chiu H.T. 2014. CAR: contig assembly of prokaryotic draft genomes using rearrangements. BMC Bioinform. 15: 381.
Mo S.S., Slettemeås J.S., Berg E.S., Norström M., and Sunde M. 2016. Plasmid and host strain characteristics of Escherichia coli resistant to extended-spectrum cephalosporins in the Norwegian broiler production. PLoS ONE, 11(4): e0154019.
Moller T.S., Overgaard M., Nielsen S.S., Bortolaia V., Sommer M.O., Guardabassi L., and Olsen J.E. 2016. Relation between tetR and tetA expression in tetracycline resistant Escherichia coli. BMC Microbiol. 16: 39.
Partridge S.R., Kwong S.M., Firth N., and Jensen S.O. 2018. Mobile genetic elements associated with antimicrobial resistance. Clin. Microbiol. Rev. 31 (4): e00088-17.
Rahube T.O. and Yost C.K. 2012. Characterization of a mobile and multiple resistance plasmid isolated from swine manure and its detection in soil after manure application. J. Appl. Microbiol. 112: 1123–1133.
Rahube T.O., Viana L.S., Koraimann G., and Yost C.K. 2014. Characterization and comparative analysis of antibiotic resistance plasmids isolated from a wastewater treatment plant. Front. Microbiol. 5: 1.
Rozwandowicz M., Brouwer M.S.M., Fischer J., Wagenaar J.A., Gonzalez-Zorn B., Guerra B., et al. 2018. Plasmids carrying antimicrobial resistance genes in Enterobacteriaceae. J. Antimicrob. Chemother. 5(73): 1121–1137.
Sampei G., Furuya N., Tachibana K., Saitou Y., Suzuki T., Mizobuchi K., and Komano T. 2010. Complete genome sequence of the incompatibility group I1 plasmid R64. Plasmid, 64: 92–103.
Schlüter A., Szczepanowski R., Pühler A., and Top E.M. 2007. Genomics of IncP-1 antibiotic resistance plasmids isolated from wastewater treatment plants provides evidence for a widely accessible drug resistance gene pool. FEMS Microbiol. Rev. 31: 449–477.
Siefert J.L. 2009. Defining the mobilome. Methods Mol. Biol. 532: 13–27.
Siguier P., Gourbeyre E., and Chandler M. 2014. Bacterial insertion sequences: their genomic impact and diversity. FEMS Microbiol. Rev. 38(5): 865–891.
Skold O. 1977. Prophylactic antibiotics and antibiotic resistance. Semin. Perinatol. 1: 101–111.
Smillie C., Garcillán-Barcia M.P., Francia M.V., Rocha E.P., and de la Cruz F. 2010. Mobility of plasmids. Microbiol. Mol. Biol. Rev. 74(3): 434–452.
Smith H., Bossers A., Harders F., Wu G., Woodford N., Schwarz S., et al. 2015. Characterization of epidemic IncI1-Iγ plasmids harbouring ambler class A and C genes in Escherichia coli and Salmonella enterica from animals and humans. Antimicrob. Agents Chemother. 59: 5357–5365.
Tansirichaiya S., Rahman M.A., and Roberts A.P. 2019. The Transposon Registry. Mobile DNA, 10: 40.
Tennstedt, T., Heuer, H., Top, E.M., Szczepanowski, R., Pühler, A., and Schlüter, A. 2005. Genomics of resistance plasmids isolated from wastewater treatment plants. Plasmid 53.
Tsang J. 2017. Bacterial plasmid addiction systems and their implications for antibiotic drug development. Postdoc. J. 5: 3–9.
van Boxtel R., Wattel A.A., Arenas J., Goessens W.H.F., and Tommassen J. 2017. Acquisition of carbapenem resistance by plasmid-encoded-AmpC-expressing Escherichia coli. Antimicrob. Agents Chemother. 61: e01413.
Vincent, J.M. 1970. A manual for the practical study of the root-nodule bacteria. Blackwell Scientific Publishers, Oxford, U.K.
Wick R.R., Schultz M.B., Zobel J., and Holt K.E. 2015. Bandage: interactive visualization of de novo genome assemblies. Bioinformatics, 31(20): 3350–3352.
World Health Organization (WHO). 2014. Antimicrobial resistance: global report on surveillance. Available from www.who.int/drugresistance/documents/surveillancereports/en/ [accessed 09 January 2021].
Yamaichi Y., Chao M.C., Sasabe J., Clark L., Davis B.M., Yamamoto N., et al. 2015. High-resolution genetic analysis of the requirements for horizontal transmission of the ESBL plasmid from Escherichia coli O104:H4. Nucleic Acids Res. 43(1): 348–360.
Yang Q.E. and Walsh T.R. 2017. Toxin–antitoxin systems and their role in disseminating and maintaining antimicrobial resistance. FEMS Microbiol. Rev. 41(2): 343–353.
Yong D., Toleman M.A., Giske C.G., Cho H.S., Sundman K., Lee K., and Walsh T.R. 2009. Characterization of a new metallo-β-lactamase gene, blaNDM-1, and a novel erythromycin esterase gene carried on a unique genetic structure in Klebsiella pneumoniae sequence type 14 from India. AAC. 53(12): 5046–5054.
Zankari E., Hasman H., Cosentino S., Vestergaard M., Rasmussen S., Lund O., et al. 2012. Identification of acquired antimicrobial resistance genes. J. Antimicrob. Chemother. 67(11): 2640–2644.
Zhanel G.G., Wiebe R., Dilay L., Thomson K., Rubinstein E., Hoban D.J., et al. 2007. Comparative review of the carbapenems. Drugs, 67: 1027–1052.

Supplementary Material

Supplementary data (cjm-2021-0012suppla.docx)

Information & Authors

Information

Published In

cover image Canadian Journal of Microbiology
Canadian Journal of Microbiology
Volume 67Number 10October 2021
Pages: 737 - 748

History

Received: 11 January 2021
Revision received: 14 May 2021
Accepted: 20 May 2021
Accepted manuscript online: 2 June 2021
Version of record online: 2 June 2021

Permissions

Request permissions for this article.

Key Words

  1. wastewater
  2. blaCMY-42
  3. resistance plasmids
  4. β-lactamase
  5. antimicrobial resistance

Mots-clés

  1. eaux usées
  2. blaCMY-42
  3. plasmides de résistance
  4. β-lactamase
  5. résistance antimicrobienne

Authors

Affiliations

Adeyinka O. Ajayi
Institute for Microbial Systems and Society, Biology Department, University of Regina, Regina, SK, Canada.
Benjamin J. Perry
Institute for Microbial Systems and Society, Biology Department, University of Regina, Regina, SK, Canada.
Christopher K. Yost*
Institute for Microbial Systems and Society, Biology Department, University of Regina, Regina, SK, Canada.
Rob C. Jamieson
Department of Civil and Resource Engineering, Dalhousie University, Halifax, NS, Canada.
Lisbeth Truelstrup Hansen
Department of Process Engineering and Applied Science, Dalhousie University, Halifax, NS, Canada.
National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark.
Teddie O. Rahube* [email protected]
Institute for Microbial Systems and Society, Biology Department, University of Regina, Regina, SK, Canada.
Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, Palapye, Botswana.

Notes

*
Christopher K. Yost served as an Editor-in-Chief and Teddie O. Rahube served as an Editorial Board Member at the time of manuscript review and acceptance, and editorial decisions regarding this manuscript were handled by Kari Dunfield.
Copyright remains with the author(s) or their institution(s). Permission for reuse (free in most cases) can be obtained from copyright.com.

Metrics & Citations

Metrics

Other Metrics

Citations

Cite As

Export Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

1. Metagenomic insights into microbial community, functional annotation, and antibiotic resistance genes in Himalayan Brahmaputra River sediment, India
2. Nature-based bioreactors: Tackling antibiotic resistance in urban wastewater treatment
3. Bibliometric analysis of papers on antibiotic resistance genes in aquatic environments on a global scale from 2012 to 2022: Evidence from universality, development and harmfulness
4. Analysis of antibiotic resistance from a rural community and wastewater contaminated environment linked to human and animal activities
5. Globally Disseminated Multidrug Resistance Plasmids Revealed by Complete Assembly of Multidrug Resistant Escherichia coli and Klebsiella pneumoniae Genomes from Diarrheal Disease in Botswana

View Options

Login options

Check if you access through your login credentials or your institution to get full access on this article.

Subscribe

Click on the button below to subscribe to Canadian Journal of Microbiology

Purchase options

Purchase this article to get full access to it.

Restore your content access

Enter your email address to restore your content access:

Note: This functionality works only for purchases done as a guest. If you already have an account, log in to access the content to which you are entitled.

View options

PDF

View PDF

Full Text

View Full Text

Figures

Tables

Media

Share Options

Share

Share the article link

Share on social media