Cookies Notification

We use cookies to improve your website experience. To learn about our use of cookies and how you can manage your cookie settings, please see our Cookie Policy.
×

General theories of reflection and transmission scratch holograms

Publication: Canadian Journal of Physics
17 January 2017

Abstract

Scratch holograms can be created easily and the associated interesting phenomena may be observed in daily life. In this paper, general and quantitative theories of scratch holograms were derived and presented. Both the reflection case where a scratch hologram reflects light, and the transmission case where it refracts and transmits light, were considered. A predictive model, which has not been presented in the literature, was developed. The model was able to solve for the position of the bright points along the scratches using a computational method. Extensive experimentation was carried out with scratch holograms of two designs to verify the model. Photographic evidence demonstrated extremely good fits with the theoretical predictions. The model was then used to theoretically simulate the 3D spatial positions of the hologram and also quantify distortion present in the images to illustrate novel real-life applications of the theories presented.

Résumé

Les hologrammes d’éraflures (scratch) peuvent être créés facilement et les phénomènes intéressants qui leur sont associés peuvent être observés dans la vie de tous les jours. Nous dérivons ici et présentons des théories générales et quantitatives pour les hologrammes d’éraflures. Nous considérons les deux cas, de réflexion où l’hologramme d’éraflures réfléchit la lumière et de transmission où il réfracte et transmet la lumière. Nous développons ici un modèle prédictif inédit. Ce modèle utilise une méthode de calcul capable de solutionner la position des points brillants le long des éraflures. Nous avons procédé à un grand nombre d’expériences avec des hologrammes d’éraflures des deux types pour vérifier le modèle. Les résultats photographiques démontrent un accord extrêmement bon avec les prédictions théoriques. Le modèle est alors utilisé pour simuler les positions spatiales 3D de l’hologramme et quantifier aussi la distorsion présente dans l’image, afin d’illustrer les nouvelles applications réelles des théories présentées. [Traduit par la Rédaction]

Get full access to this article

View all available purchase options and get full access to this article.

References

1
Kirkpatrick P Am. J. Phys. 22, 493 (1954).
2
Lott J.B. Math. Gaz. 47, 113 (1963).
3
Duke T. J. Phys.: Conf. Ser. 415, 012033 (2013).
4
Plummer W.T. and Gardner L.R. Appl. Opt. 31, 6585 (1992).
5
Abramson N.H. Proc. SPIE, 4149, 153 (2000).
6
Eichler J., Dünkel L., and Gonçalves O. Appl. Opt. 42, 5627 (2003).
7
Beaty W.J. Proc. SPIE, 5005, 156 (2003).
8
Ángel G.A. and Raúl B.S. Rev. Cub. Física, 27, 107 (2009).
9
Augier Á.G. and Sánchez R.B. Opt. Commun. 284, 112 (2011).
10
C. Regg, S. Rusinkiewicz, W. Matusik, and M. Gross. ACM Trans. Graph. (Proc. SIGGRAPH) 29(6), 170 (2010).
11
Brand M. Appl. Opt. 50, 5042 (2011).
12
Garfiled E. Essays Inf. Sci. 5, 348 (1981).

Information & Authors

Information

Published In

cover image Canadian Journal of Physics
Canadian Journal of Physics
Volume 95Number 5May 2017
Pages: 432 - 439

Article versions

History

Received: 3 July 2016
Accepted: 3 January 2017
Accepted manuscript online: 17 January 2017
Version of record online: 17 January 2017

Permissions

Request permissions for this article.

Key Words

  1. geometric optics
  2. scratch hologram
  3. ray-tracing
  4. image distortion
  5. computational physics

Mots-clés

  1. optique géométrique
  2. hologramme d’éraflures
  3. traçage (ou lancer) de rayons
  4. distorsion d’image
  5. physique numérique

Authors

Affiliations

Bingjian Li [email protected]
Raffles Science Institute, Raffles Institution, S575954, Singapore.
Zi Yang Kang
Department of Mathematics, Stanford University, CA 94305, Stanford, US.
Jiahuang Lin
Department of Mathematics, Princeton University, NJ 08544, Princeton, US.
Ye Yeo
Department of Physics, National University of Singapore, S119260, Singapore.
Guoxian Tan
Raffles Science Institute, Raffles Institution, S575954, Singapore.

Notes

Copyright remains with the author(s) or their institution(s). Permission for reuse (free in most cases) can be obtained from RightsLink.

Metrics & Citations

Metrics

Other Metrics

Citations

Cite As

Export Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

1. Inkjet printing of specular holograms based on a coffee-ring effect concave structure

View Options

Login options

Check if you access through your login credentials or your institution to get full access on this article.

Subscribe

Click on the button below to subscribe to Canadian Journal of Physics

Purchase options

Purchase this article to get full access to it.

Restore your content access

Enter your email address to restore your content access:

Note: This functionality works only for purchases done as a guest. If you already have an account, log in to access the content to which you are entitled.

View options

PDF

View PDF

Full Text

View Full Text

Figures

Tables

Media

Share Options

Share

Share the article link

Share on social media