The Belgian repository of fundamental atomic data and stellar spectra

Publication: Canadian Journal of Physics
19 January 2017

Abstract

BRASS is an international networking project of the Federal Government of Belgium for the development of a new public database providing accurate fundamental atomic data of vital importance for stellar spectroscopic research. The BRASS database will offer atomic line data that is thoroughly tested by comparing theoretical and observed stellar spectra. We are in the course of performing extensive quality assessments of selected atomic input data with advanced radiative transfer spectrum synthesis calculations that we compare in detail to high-resolution Mercator-HERMES and ESO-VLT-UVES spectra of very high signal-to-noise ratios for about 30 hot and cool bright stars of B, A, F, G, and K spectral types. The new database will provide the tested and validated values of absorption lines we retrieve from various existing atomic repositories, such as NIST and VAMDC. The validated atomic datasets, combined with the observed and theoretical spectra, will be interactively offered online at brass.sdf.org. The combination of these datasets is a novel approach for its development, which will provide a universal reference for advanced stellar spectroscopic research. We present the atmospheric parameter results of a subset of five benchmark stars observed with signal-to-noise ratios of 800–1200. The observed and theoretical spectra of the Sun and 51 Peg between 4000 and 6800 Å are offered online in the BRASS Data Interface. It also incorporates a new list of ∼900 metal lines for which we compute blending below 5% of the equivalent width useful for detailed line profile modeling and synthetic spectrum fit quality assessments of atomic line data.

Résumé

BRASS est un projet de réseautage du gouvernement fédéral de la Belgique pour le développement d’une base publique de données fournissant des données atomiques fondamentales précises d’importance vitale pour la recherche en spectroscopie stellaire. La base de données BRASS fournira des données sur les raies atomiques que nous testons de façon rigoureuse en comparant les valeurs théoriques avec les spectres stellaires observés. Nous en sommes au point d’évaluer systématiquement la qualité de données atomiques d’entrée sélectionnées avec des calculs poussés de synthèse de spectre de transfert radiatif que nous comparons en détail aux spectres de haute résolution Mercator-HERMES et ESO-VLT-UVES de très haut rapport signal sur bruit pour 30 étoiles brillantes chaudes et froides de type spectral B, A, F, G et K. La nouvelle base de données fournira les valeurs testées et validées de raies d’absorption que nous extrayons de diverses archives comme NIST et VAMDC. L’ensemble des données atomiques validées, combiné avec les spectres calculés et théoriques, seront offerts en ligne à brass.sdf.org. La combinaison de ces ensembles de données est une nouvelle approche dans un développement qui fournira une référence universelle pour les études avancées en recherche spectroscopique stellaire. Nous présentons les résultats des paramètres d’atmosphère de cinq étoiles étalons observées avec un rapport signal sur bruit de 800–1200. Les spectres théoriques et observés du Soleil et de 51 Peg entre 4000 et 6800 Å sont offerts en ligne dans l’interface de données BRASS. On y trouve aussi incorporée une nouvelle liste de ∼900 raies métalliques pour lesquelles nous calculons un mélange <5% de largeur équivalente, utile pour une modélisation détaillée du profil de raie et une évaluation de la qualité d’ajustement du spectre synthétique des données de raies atomiques. [Traduit par la Rédaction]

Get full access to this article

View all available purchase options and get full access to this article.

References

1
Dubernet M.L., Antony B.K., Ba Y.A., et al. J. Phys. B: At. Mol. Opt. Phys. 49, 074003 (2016).
2
A. Kramida, Y. Ralchenko, J. Reade, and the NIST ASD Team. NIST atomic spectra database (version 5). 2016. www.nist.gov/pml/atomic-spectra-database.
3
J. Tennyson and S.N. Yurchenko. Mon. Not. R. Astron. Soc. 425, 21 (2012). www.exomol.com.
4
European Space Agency. Gaia Science Performance. 2017. www.cosmos.esa.int/web/gaia/science-performance.
5
Lobel A. J. Phys.: Conf. Ser. 328, 012027 (2011).
6
Lee Y.S., Beers T.C., Sivarani T., et al. Astron. J. 136, 2050 (2008).
7
Siebert A., Williams M.E.K., Siviero A., et al. Astron. J. 141, 187 (2011).
8
Sousa J.B., Santos N.C., Adibekyan V., et al. Astron. Astrophys. 561, 21 (2013).
9
Raskin H., van Winckel H., Hensberge H., et al. A&A, 526, A69 (2011).
10
Neckel H. and Labs D. Solar Phys. 90, 205 (1984).
11
Bagnulo S., Jehin E., Ledoux C., et al. Messenger, 114, 10 (2003).
12
Kurucz R.L. Rev. Mexicana. Astron. Astrof. 23, 45 (1992).
13
F. Castelli, R. Kurucz, and IAU Symp. Modelling of stellar atmospheres. Edited by N.E. Piskunov, W.W. Weiss and D.F. Gray. Uppsala, Sweden, ASP-S210. 2003.
14
Lobel A. Can. J. Phys. 89, 395 (2011).
15
Grevesse N., Asplund M., and Sauval A.J. Space Sci. Rev. 130, 105 (2007).
16
Bruntt H., Basu S., Smalley B., et al. Mon. Not. R. Astron. Soc. 423, 122 (2012).
17
Lobel A. J. Phys. Conf. Ser. 130, 0120215 (2008).
18
Ryabchikova T., Piskunov N., Kurucz R.L., Stempels H.C., Heiter U., Pakhomov Y., and Barklem P.S. Phys. Scr. 90, 054005 (2015).
19
Young P., Dere K., Landi E., Del Zanna G., and Mason H. J. Phys. B: Atom. Mol. Opt. Phys. 49, 7 (2016).
20
A.Y. Faenov, A.I. Magunov, T.A. Pikuz, et al. Proc. 3rd Int. Conf. Atom. Mol. Data Appl. 636, 253 (2002).
21
Cunto W., Mendoza C., Ochsenbein F., and Zeippen C.J. Astron. Astrophys. 275, L5 (1993).
22
M. Laverick, A. Lobel, P. Royer, C. Martayan, and T. Merle. Can. J. Phys. This issue. (2017).
23
Mayor M. and Queloz D. Nature, 378, 355 (1995).
24
Meléndez J. and Barbuy B. A&A, 497, 611 (2009).
25
Schnabel R., Schultz-Johanning M., and Kock M. A&A, 414, 1169 (2004).
26
Kupka F., Piskunov N.E., Ryabchikova T.A., Stemples H.C., and Weiss W.W. Astron. Astrophys. Suppl. 138, 119 (1999).

Information & Authors

Information

Published In

cover image Canadian Journal of Physics
Canadian Journal of Physics
Volume 95Number 9September 2017
Pages: 833 - 839

History

Received: 13 October 2016
Accepted: 3 January 2017
Accepted manuscript online: 19 January 2017
Version of record online: 19 January 2017

Notes

This paper is part of a Special Issue on the 12th International Colloquium on Atomic Spectra and Oscillator Strengths for Astrophysical and Laboratory Plasmas held at the Universidade de São Paulo on 4–7 July, 2016.

Permissions

Request permissions for this article.

Key Words

  1. stellar spectroscopy
  2. spectral lines
  3. quantitative spectroscopy
  4. atomic line data
  5. atomic databases

Mots-clés

  1. spectroscopie stellaire
  2. raies spectrales
  3. spectroscopie quantitative
  4. données de raies atomiques
  5. banques de données atomiques

Authors

Affiliations

Royal Observatory of Belgium, Ringlaan 3, B-1180, Brussels, Belgium.
P. Royer
Katholieke Universiteit Leuven, Belgium.
C. Martayan
European Southern Observatory, Paranal, Chile.
M. Laverick
Katholieke Universiteit Leuven, Belgium.
T. Merle
Université Libre de Bruxelles, Belgium.
M. David
University of Antwerp, Belgium.
H. Hensberge
Royal Observatory of Belgium, Ringlaan 3, B-1180, Brussels, Belgium.
E. Thienpont
Vereniging voor Sterrenkunde, Belgium.

Notes

Copyright remains with the author(s) or their institution(s). Permission for reuse (free in most cases) can be obtained from RightsLink.

Metrics & Citations

Metrics

Other Metrics

Citations

Cite As

Export Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

1. The Gaia -ESO Survey: The analysis of the hot-star spectra
2. The Belgian Repository of Fundamental Atomic Data and Stellar Spectra (BRASS)
3. The Belgian Repository of fundamental Atomic data and Stellar Spectra (BRASS)
4. The Belgian repository of fundamental atomic data and stellar spectra (BRASS)
5. The Belgian Repository of Fundamental Atomic Data and Stellar Spectra (BRASS) Identifying Fruitful Methods for Producing Atomic Data
6. The Belgian repository of fundamental atomic data and stellar spectra (BRASS)
7. BRASS: Cross-match of atomic repositories and spectral line blending investigations1

View Options

Login options

Check if you access through your login credentials or your institution to get full access on this article.

Subscribe

Click on the button below to subscribe to Canadian Journal of Physics

Purchase options

Purchase this article to get full access to it.

Restore your content access

Enter your email address to restore your content access:

Note: This functionality works only for purchases done as a guest. If you already have an account, log in to access the content to which you are entitled.

View options

PDF

View PDF

Full Text

View Full Text

Figures

Tables

Media

Share Options

Share

Share the article link

Share on social media