Analysis of β+ decay of 13N nucleus using a modified one-particle approach

Publication: Canadian Journal of Physics
24 August 2020

Abstract

It is known that the calculated values of log(ft) and the half-life of beta decay are less than the measured values when a single-particle approach is used to calculate these quantities. In this article, we discuss the importance of taking into account the spectroscopic factor in the calculation of the half-life and log(ft) beta decay of nuclei containing one nucleon in the outermost shell. We also emphasize the dominant role of the asymptotic normalization coefficient, which takes into account the many-particle effect and allows us to obtain the spectroscopic factor necessary to describe the reaction 13N → 13C + β+ + νe. We find the asymptotic normalization coefficients using the experimental data of the elastic scattering phase-shift of the proton and neutron on 12C. Using overlap functions instead of single-particle functions, we obtain a better comparison with the experimental data. The overlap function is represented as the product of the single-particle function and the root of the corresponding spectroscopic factor.

Résumé

On sait généralement que les valeurs calculées de log(ft) et de la demi-vie de la désintégration bêta sont moindres que les valeurs mesurées lorsque le calcul est fait en utilisant une approche à une particule. Dans cet article, nous discutons l’importance de tenir compte du facteur spectroscopique des noyaux contenant un seul nucléon dans la couche extérieure. Nous soulignons aussi le rôle dominant du coefficient de normalisation asymptotique qui tient compte des effets à plusieurs corps et nous permet d’obtenir le facteur spectroscopique nécessaire pour décrire la réaction 13N → 13C + β+ + νe. Nous trouvons le coefficient de normalisation asymptotique en utilisant les données expérimentales de déphasage dans la diffusion élastique de protons et de neutrons sur 12C. L’usage des fonctions de recouvrement, au lieu des fonctions d’onde à une particule, nous permet d’obtenir une meilleure comparaison avec les données expérimentales. La fonction de recouvrement est représentée comme le produit de la fonction d’onde à une particule avec la racine carrée du facteur spectroscopique. [Traduit par la Rédaction]

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
K.S. Krane and S. Kenneth. Oregon state university, Introductory Nuclear Physics. John Wiley & Sons, New York, NY. 1988.
2.
J. Suhonen. From nucleons to nucleus: concepts of microscopic nuclear theory. Springer Science & Business Media, Berlin, Germany. 2007.
3.
Fermi E. and Z. Z Physik, 88, 161 (1934).
4.
Gamow G. and Teller E. Phys. Rev. 49, 895 (1936).
5.
Takahashi K. and Yamada M. Prog. Theor. Phys. 41, 1470 (1969).
6.
Kim C. and Primakoff H. Phys. Rev. 147, 1034 (1966).
7.
M. Rho. arXiv:1705.10864v2. 2017.
8.
Caurier E., Zuker A., Poves A., and Martinez-Pinedo G. Phys. Rev. C, 50, 225 (1994).
9.
Langanke K., Dean D., Radha P., Alhassid Y., and Koonin S. Phys. Rev. C, 52, 718 (1995).
10.
Martinez-Pinedo G., Poves A., Caurier E., and Zuker A. Phys. Rev. C, 53, R2602 (1996).
11.
Langanke K. and Martínez-Pinedo G. Nucl. Phys. A, 673, 481 (2000).
12.
Suhonen J.T. Front. Phys. 5, 55 (2017).
13.
Staudt A., Bender E., Muto K., and Klapdor-Kleingrothaus H. At. Data. Nucl. Data Tables, 44, 79 (1990).
14.
Hirsch M., Staudt A., Muto K., and Klapdorkleingrothaus H. At. Data. Nucl. Data Tables, 53, 165 (1993).
15.
Nabi J.-U. and Klapdor-Kleingrothaus H.V. At. Data. Nucl. Data Tables, 71, 149 (1999).
16.
Nabi J.-U. and Klapdor-Kleingrothaus H.V. At. Data. Nucl. Data Tables, 88, 237 (2004).
17.
Singham M. Nucl. Phys. A 460, 597 (1986).
18.
Amos K., Berge L., and Kurath D. Phys. Rev. C, 40, 1491 (1989).
19.
Blokhintsev L., Kukulin V., Sakharuk A., Savin D., and Kuznetsova E. Phys. Rev. C, 48, 2390 (1993).
20.
S.S.M. Wong. Introductory nuclear physics. Vol. 129. John Wiley and Sons, Inc., Hoboken, NJ. 1990.
21.
Mukhamedzhanov A. and Tribble R.E. Phys. Rev. C, 59, 3418 (1999).
22.
Wildermuth K. and Kanellopoulos T. Nucl. Phys. 7, 150 (1958).
23.
M. Brenner, T. Lönnroth, and and F.B. Malik. Clustering Phenomena in Atoms and Nuclei: International Conference on Nuclear and Atomic Clusters. 1991 European Physical Society Topical Conference, Åbo Akademi, Turku, Finland, June 3–7, 1991. Springer Science & Business Media. 2013.
24.
Bokanowski O. and Grebert B. Math. Models Methods Appl. Sci. 06, 437 (1996).
25.
Lehtola S., Tubman N.M., Whaley K.B., and Head-Gordon M. J. Chem. Phys. 147, 154105 (2017).
26.
Z. Li, J. Su, B. Guo, et al. arXiv:0905.1530v1. 2009.
27.
Liu X., Famiano M., Lynch W., Tsang M., and Tostevin J. Phys. Rev. C, 69, 064313 (2004).
28.
Tsang M., Lee J., and Lynch W.G. Phys. Rev. Lett. 95, 222501 (2005).
29.
E. Hagberg, J. Hardy, V. Koslowsky, G. Savard, and I. Towner. arXiv:nucl-ex/9609002. 1996.
30.
Timofeyuk N., Johnson R., and Mukhamedzhanov A. Phys. Rev. Lett. 91, 232501 (2003).
31.
Okołowicz J., Michel N., Nazarewicz W., and Płoszajczak M. Phys. Rev. C, 85, 064320 (2012).
32.
Mukhamedzhanov A., Irgaziev B., Goldberg V., Orlov Y.V., and Qazi I. Phys. Rev. C, 81, 054314 (2010).
33.
Orlov Y.V., Irgaziev B., and Nikitina L. Phys. Rev. C, 93 (2016).
34.
Ebran J.-P., Khan E., Nikšić T., and Vretenar D. Nature, 487, 341 (2012).
35.
Irgaziev B.F., Nabi J.-U., and Kabir A. Astrophys. Space Sci. 363, 148 (2018).
36.
Irgaziev B. and Orlov Y.V. Phys. Rev. C, 91, 024002 (2015).
37.
Orlov Y.V., Irgaziev B., and Nabi J.-U. Phys. Rev. C, 96, 025809 (2017).
38.
Irgaziev B. and Orlov Y.V. Phys. Rev. C, 98, 015803 (2018).
39.
Hamilton J., Øverbö I., and Tromborg B. Nucl. Phys. B, 60, 443 (1973).
40.
N. Burtebaev, S. Igamov, R. Peterson, R. Yarmukhamedov, and and D. Zazulin. 6th International conference on modern problems of nuclear physics (tashkent). Vol. 55. 2006.
41.
Fernandes J., Crespo R., and Nunes F. Phys. Rev. C, 61, 064616 (2000).
42.
Huang J., Bertulani C., and Guimarães V. At. Data. Nucl. Data Tables, 96, 824 (2010).
43.
Goncharov S. Yad. Fiz. 35, 662 (1982).
44.
T. Belyaeva, R. Perez-Torres, A. Demyanova, S. Goncharov, and A. Ogloblin. EPJ Web of Conferences, Vol. 66. EDP Sciences. p. 03009. 2014.
45.
Liu Z.H., Lin C.J., Zhang H.Q., Li Z.C., Zhang J.S., Wu Y.W., Yang F., Ruan M., Liu J.C., Li S.Y., and Peng Z.H. Phys. Rev. C, 64, 034312 (2001).
46.
Reich C., Phillips G., and Russell J. Phys. Rev. 104, 143 (1956).
47.
Drigo L., Manduchi C., Nardelli G., Russo-Manduchi M., and Zannoni G. Phys. Rev. 136, B1662 (1964).
48.
T.B.J.L. Weil and F. McDaniel. Proc. Int. Conf. on Nuclear Cross Sections for Technology. J. L. Fowler, C.H. Johnson, and C.D. Bowman (Eds.). Oak Ridge National Laboratory, Knoxville TN. 1979.
49.
Lister D. and Sayres A. Phys. Rev. 143, 745 (1966).
50.
TUNL. Available from https://tunl.duke.edu/sites/tunl.duke.edu/files/nucldata/. Triangle Universities Nuclear Laboratory, Durham, NC.

Information & Authors

Information

Published In

cover image Canadian Journal of Physics
Canadian Journal of Physics
Volume 99Number 3March 2021
Pages: 176 - 184

History

Received: 19 March 2020
Accepted: 13 August 2020
Published online: 24 August 2020

Permissions

Request permissions for this article.

Key Words

  1. CNO cycle
  2. β+ decay
  3. asymptotic normalization coefficient
  4. spectroscopic factor
  5. potential model

Mots-clés

  1. cycle CNO
  2. désintégration β+
  3. coefficient de normalisation asymptotique
  4. facteur spectroscopique
  5. modèle de potentiel

Authors

Affiliations

Bakhadir F. Irgaziev
GIK Institute of Engineering Sciences & Technology, Topi, Khyber Pakhtunkhwa, 23640, Pakistan.
Jameel-Un Nabi
GIK Institute of Engineering Sciences & Technology, Topi, Khyber Pakhtunkhwa, 23640, Pakistan.
GIK Institute of Engineering Sciences & Technology, Topi, Khyber Pakhtunkhwa, 23640, Pakistan.

Notes

Copyright remains with the author(s) or their institution(s). Permission for reuse (free in most cases) can be obtained from copyright.com.

Metrics & Citations

Metrics

Other Metrics

Citations

Cite As

Export Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

1. Magnetic dipole transitions in 9 Be(p,γ) 10 B
2. Application of ANCs for calculation of β+ decay of 17F nucleus

View Options

Get Access

Login options

Check if you access through your login credentials or your institution to get full access on this article.

Subscribe

Click on the button below to subscribe to Canadian Journal of Physics

Purchase options

Purchase this article to get full access to it.

Restore your content access

Enter your email address to restore your content access:

Note: This functionality works only for purchases done as a guest. If you already have an account, log in to access the content to which you are entitled.

View options

PDF

View PDF

Full Text

View Full Text

Media

Media

Other

Tables

Share Options

Share

Share the article link

Share with email

Email a colleague

Share on social media