Cookies Notification

We use cookies to improve your website experience. To learn about our use of cookies and how you can manage your cookie settings, please see our Cookie Policy.

Theoretical study of thermal response of bimaterial microcantilevers with different coating materials

Publication: Canadian Journal of Physics
14 October 2020


Bilayer microcantilevers are a versatile tool in thermal and bio-sensing with responses relying on the mismatch between the two constituting materials. The cantilever response, such as a deflection and resonance frequency shift, could be involved when the cantilever is in contact with an arbitrary heat source in the ambient environment. In this study, thermally induced deflection will be theoretically examined assuming a heat source located at various positions on the cantilever. The combined contributions of heat absorption, thermal conductivity, and material rigidity on the final deflection will be revealed. Selecting an optimal position leads to 1.5 times enhancement of the cantilever deflection in comparison to thermal excitation at the cantilever end in conventional experiments, which implies a significant increase in thermal sensitivity. Furthermore, responses of cantilevers with different coating materials (Au, Al, Cu, or Ni) have been examined and show a dominant sensitivity of Al- and Ni- over Cu- and Au-coated cantilevers. These results could help to explain recent experimental results and to choose an optimal thermal excitation of microcantilevers in sensing.


Le micro-cantilever bicouche est un outil très adaptable en thermique et en bio-détection, dont les réponses s’appuient sur une différence entre les propriétés des deux matériaux constituants. Les deux types de réponse du levier-cantilever, soit le degré de flexion du cantilever ou le décalage de sa fréquence de résonance, peuvent se manifester quand le cantilever est en contact avec une source de chaleur arbitraire dans un environnement ambiant. Nous présentons ici une étude théorique de la flexion induite en fonction du point de contact de la source de chaleur sur le bras du cantilever. Nous pouvons ainsi identifier les effets combinés sur la flexion finale, provenant de l’absorption de chaleur, de la conductivité thermique et de la rigidité du matériau. La sélection d’une position optimale de la source mène à une augmentation de la flexion par un facteur de 1.5, comparée à la flexion observée avec la source à l’extrémité du bras du cantilever dans une expérience conventionnelle, ce qui implique une augmentation notable de la sensibilité thermique. De plus, nous examinons la réponse selon différents enduits de surface : Au, Al, Cu ou Ni et nous notons une plus grande sensibilité avec les couches de surface de Al et Ni qu’avec les couches de Cu et Au. Ces résultats pourraient aider à expliquer certains résultats expérimentaux récents et permettre d’optimiser l’excitation thermale des micro-cantilevers utilisés comme détecteurs. [Traduit par la Rédaction]

Get full access to this article

View all available purchase options and get full access to this article.


Prescesky S., Parameswaran M., Rawicz A., Turner R.F.B., and Reichl U. Can. J. Phys. 70, 1178 (1992).
Lavrik N.V. and Datskos P.G. Appl. Phys. Lett. 82, 2697 (2003).
Lavrik N.V., Sepaniak M.J., and Datskos P.G. Rev. Sci. Instrum. 75, 2229 (2004).
Finot E., Passian A., and Thundat T. Sensors, 8, 3497 (2008).
Xu L.-C. and Siedlecki C.A. Langmuir, 25, 3675 (2009).
Toda M., Inomata N., Ono T., and Voiculescu I. IEEJ Trans. Elec. Electron. Eng. 12, 153 (2017).
Sun Y., Ma J., Liu S., and Yang J. Can. J. Phys. 95, 322 (2017).
Sposito A.J., Kurdekar A., Zhao J., and Hewlett I. WIREs. Nanomed. Nanobiotechnol. 10, e1512 (2018).
Rogers B., Manning L., Jones M., Sulchek T., Murray K., Beneschott B., Adams J.D., Hu Z., Thundat T., Cavazos H., and Minne S.C. Rev. Sci. Instrum. 74, 4899 (2003).
Gupta A., Akin D., and Bashir R. Appl. Phys. Lett. 84, 1976 (2004).
Etayash H., Khan M.F., Kaur K., and Thundat T. Nat. Commun. 7, 12947 (2016).
Fang F., Min F., Xue C., and Du J. Surf. Rev. Lett. 0, 1830010 (2018).
Inomata N., Toda M., and Ono T. IJAT. 12, 15 (2018).
Barnes J.R., Stephenson R.J., Woodburn C.N., O’Shea S.J., Welland M.E., Rayment T., Gimzewski J.K., and Gerber C. Rev. Sci. Instrum. 65, 3793 (1994).
Sadat S., Chua Y.J., Lee W., Ganjeh Y., Kurabayashi K., Meyhofer E., and Reddy P. Appl. Phys. Lett. 99, 043106 (2011).
LeMieux M.C., McConney M.E., Lin Y.-H., Singamaneni S., Jiang H., Bunning T.J., and Tsukruk V.V. Nano. Lett. 6, 730 (2006).
Łabędź B., Wańczyk A., and Rajfur Z. PloS One 12, 1 (2017).
Vy N.D. and Iida T. Appl. Phys. Express, 9, 126601 (2016).
Ramos D., Tamayo J., Mertens J., and Calleja M. J. Appl. Phys. 99, 124904 (2006).
Antonietti J.-M., Gong J., Habibpour V., Röttgen M.A., Abbet S., Harding C.J., Arenz M., Heiz U., and Gerber C. Rev. Sci. Instrum. 78, 054101 (2007).
Finot E., Fabre A., Passian A., and Thundat T. Phys. Rev. Appl. 1, 024001 (2014).
Comella B.T. and Scanlon M.R. J. Mater. Sci. 35, 567 (2000).
Dhara S., Chandra S., Magudapathy P., Kalavathi S., Panigrahi B.K., Nair K.G.M., Sastry V.S., Hsu C.W., Wu C.T., Chen K.H., and Chen L.C. J. Chem. Phys. 121, 12595 (2004).
Feng L., Gao F., Liu M., Wang S., Li L., Shen M., and Wang Z. J. Appl. Phys. 112, 013501 (2012).
Huy H.T., Dat L.T., and Vy N.D. J. Appl. Phys. 122, 224502 (2017).
Meng X., Shibayama T., Yu R., Takayanagi S., and Watanabe S. J. Mater. Sci. 48, 920 (2013).
Serrano J.R., Phinney L.M., and Rogers J.W. Int. J. Heat Mass Trans. 52, 2255 (2009).
Hoang C.M., Iida T., Dat L.T., Huy H.T., and Vy N.D. Opt. Commun. 403, 150 (2017a).
Pham V.N.T., Hoang C.M., Huy H.T., Dat L.T., Vy N.D., Iida T., and Payam A.F. Appl. Phys. Express, 13, 064002 (2020).
Hoang C.M., Vy N.D., Dat L.T., and Iida T. Jpn. J. Appl. Phys. 56, 06GK05 (2017b).
Dat L.T., Huy H.T., and Vy N.D. Comm. Phys. 28, 255 (2018).
W., Young, R., Budynas, and A., Sadegh. Roark’s formulas for stress and strain. McGraw-Hill Education. 2012.
Lai J., Perazzo T., Shi Z., and Majumdar A. Sens. Actuators, A, 58, 113 (1997).
Vy N.D., Dat L.T., and Iida T. Appl. Phys. Lett. 109, 054102 (2016).
Hermans R.I., Dueck B., Ndieyira J.W., McKendry R.A., and Aeppli G. Sci. Rep. 6, 26690 (2016).

Information & Authors


Published In

cover image Canadian Journal of Physics
Canadian Journal of Physics
Volume 99Number 4April 2021
Pages: 269 - 274


Received: 15 June 2020
Accepted: 23 September 2020
Accepted manuscript online: 14 October 2020
Version of record online: 14 October 2020


Request permissions for this article.

Key Words

  1. bimaterial cantilever
  2. thermal excitation
  3. optimal excitation
  4. coating material
  5. atomic force microscope


  1. cantilevers bimatériaux
  2. excitation thermique
  3. matériau de revêtement/d’enduit
  4. microscope à force atomique



Laboratory of Applied Physics, Advanced Institute of Materials Science, Ton Duc Thang University, Ho Chi Minh City 756636, Vietnam.
Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City 756636, Vietnam.
Vinh N.T. Pham
Department of Physics, Ho Chi Minh city University of Education, Ho Chi Minh City 700000, Vietnam.
Ho Thanh Huy
Department of Physics and Engineering Physics, Ho Chi Minh City University of Science, VNU-HCM 700000, Vietnam.
Takuya Iida
Research Institute for Light-induced Acceleration System, Osaka Prefecture University, Sakai, Osaka 599-8570, Japan.
Department of Physical Science, Graduate School of Science, Osaka Prefecture University, Sakai, Osaka 599-8570, Japan.
Nguyen Duy Vy [email protected]
Laboratory of Applied Physics, Advanced Institute of Materials Science, Ton Duc Thang University, Ho Chi Minh City 756636, Vietnam.
Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City 756636, Vietnam.


Copyright remains with the author(s) or their institution(s). Permission for reuse (free in most cases) can be obtained from

Metrics & Citations


Other Metrics


Cite As

Export Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

1. Low frequency photothermal excitation of AFM microcantilevers

View Options

Get Access

Login options

Check if you access through your login credentials or your institution to get full access on this article.


Click on the button below to subscribe to Canadian Journal of Physics

Purchase options

Purchase this article to get full access to it.

Restore your content access

Enter your email address to restore your content access:

Note: This functionality works only for purchases done as a guest. If you already have an account, log in to access the content to which you are entitled.

View options


View PDF

Full Text

View Full Text





Share Options


Share the article link

Share on social media