Cookies Notification

We use cookies to improve your website experience. To learn about our use of cookies and how you can manage your cookie settings, please see our Cookie Policy.
×

Antagonistic effect of copper and zinc in fertilization of spring wheat under low soil phosphorus conditions

Publication: Canadian Journal of Soil Science
31 August 2022

Abstract

Sound micronutrient management requires an understanding of nutrient interactions and transformation processes in soil–plant systems which can regulate bioavailability and plant uptake. A series of studies were conducted under controlled environment and field conditions to evaluate wheat response to Cu and Zn fertilization on P-deficient soils from western Canada. The grain and straw yields of wheat were reduced in two (Waskada and Tisdale) of three soils used in the controlled environment study, while yield was not affected at the Echo field site in 2016 when both Cu and Zn sulfate fertilizer were applied at 5 kg·ha–1 rates. Zinc concentration in soil and plant tissues was increased to apparent toxic levels with fertilizer addition in Waskada soils. An imbalance in tissue P:Zn concentration related to micronutrient fertilization was observed in Waskada and Tisdale soils. The availability of Cu and Zn in post-harvest soils was increased with increasing rate of these fertilizers' addition. Chemical and spectroscopic speciation using sequential extraction and X-ray absorption near edge structure, respectively, revealed that Cu and Zn were mostly speciated as carbonate phases, and complexation of these elements with carbonate and phyllosilicate minerals is likely the process controlling bioavailability in the soils.

Résumé

Pour bien gérer les oligoéléments, il faut comprendre les interactions des nutriments et les processus de transformation du système plante-sol qui en régulent la biodisponibilité ainsi que l’absorption par la plante. Les auteurs ont réalisé une série d’études en milieu contrôlé et sur le terrain pour évaluer la réaction du blé à des amendements de Cu et de Zn sur des sols carencés en P de l’Ouest canadien. Le rendement grainier et la quantité de paille du blé ont diminué sur deux des trois sols utilisés pour l’expérience dans des conditions contrôlées (Waskada et Tisdale), mais le rendement n’a pas été affecté sur le troisième (Echo), en 2016, après application de 5 kg de sulfate de Cu et de Zn par hectare, sur le terrain. Ajouter de l’engrais aux sols de Waskada a accru la concentration de zinc dans le sol et les tissus végétaux jusqu’à un taux apparemment toxique. Les auteurs ont relevé un déséquilibre de la concentration P:Zn dans les tissus végétaux après fertilisation des sols de Waskada et de Tisdale avec les deux oligoéléments. La quantité de Cu et de Zn disponible dans le sol après la récolte augmente avec le taux d’application des engrais. La spéciation chimique et la spéciation spectroscopique établies respectivement par extraction séquentielle et spectroscopie absorption des rayons X près de la structure du bord indiquent que le Cu et le Zn se retrouvent le plus souvent dans une phase carbonée et que le processus qui en régule la biodisponibilité dans le sol correspond sans doute à la formation de complexes par ces éléments et les carbonates ou les phyllosilicates. [Traduit par la Rédaction]

Get full access to this article

View all available purchase options and get full access to this article.

References

Alloway B.J. 1995. Soil processes and the behaviour of metals. In Heavy metals in soils. Edited by B.J. Alloway. Blackie, Glasgow. pp. 1–52.
Alloway B.J. 2008. Zinc in soils and crop nutrition. 2nd ed. IZA Publications. International Zinc Association/International Fertilizer Association, Brussels, Belgium/Paris, France.
Anderson S., Schoenau J., Vandenberg A. 2018. Effects of zinc fertilizer amendments on yield and grain zinc concentration under controlled environment conditions. J. Plant Nutr. 41(14): 1842–1850.
Boudesocque S., Guillon E., Aplincourt M., Marceau E., Stievano L. 2007. Sorption of Cu(II) onto vineyard soils: macroscopic and spectroscopic investigations. J. Colloid Interf. Sci. 307(1): 40–49.
Bradl H.B. 2004. Adsorption of heavy metal ions of soils and soils constituents. J. Colloid Interf. Sci. 277(1): 1–18.
Cakmak I., Öztürk L., Eker S., Torun B., Kalfa H.I., Yilmaz. A. 1997. Concentration of zinc and activity of copper/zinc-superoxide dismutase in leaves of rye and wheat cultivars differing in sensitivity to zinc deficiency. J. Plant Physiol. 151(1): 91–95.
Carsky R.J., Reid W.S. 1990. Response of corn to zinc fertilization. J. Prod. Agric. 3(4): 502–507.
Elzinga E.J., Reeder R.J. 2002. X-ray absorption spectroscopy study of Cu2+ and Zn2+ adsorption complexes at the calcite surface: implications for site-specific metal incorporation preferences during calcite crystal growth. Geochimi. Cosmochimi. Acta. 66(22): 3943–3954.
Fageria N.K. 2000. Adequate and toxic levels of zinc for rice, common bean, corn, soybean and wheat production in cerrado soil. Rev. Bras. Eng. Agric. Ambiental. 4(3): 390–395.
Fageria N.K. 2001. Adequate and toxic levels of copper and manganese in upland rice, common bean, corn, soybean, and wheat grown on an oxisol. Commun. Soil. Sci. Plant Anal. 32(9-10): 1659–1676.
Fageria N.K. 2002. Influence of micronutrients on dry matter yield and interaction with other nutrients in annual crops. Pesq. Agropec. Bras. 37(12): 1765–1772.
Fageria N.K., Filho M.B., Moreira A., Guimaraes C.M. 2009. Foliar fertilization of crop plants. J. Plant Nutri. 32(6): 1044–1064.
Flaten P.I., Karamanos R.E., Walley F.L. 2003. Copper fertilization of wheat on soils with marginal copper levels. In Proceedings of the Soils and Crops Workshop. University of Saskatchewan, Saskatoon, SK. pp. 1–9.
Foth H.D., Ellis B.G. 1997. Soil fertility. 2nd ed. Lewis Publishers, New York.
Goh T.B., Karamanos R.E. 2006. Copper fertilizer practices in Manitoba. Can. J. Plant Sci. 86(4): 1139–1152.
Grant C.A., Bailey L.D. 1993. Interactions of zinc with banded and broadcast phosphorus fertilizer on the concentration and uptake of P, Zn, Ca and Mg in plant tissue of oilseed flax. Can. J. Plant Sci. 73(1): 17–29.
Grant C.A., Monreal M.A., Irvine R.B., Mohr R.M., McLaren D.L., Khakbazan M. 2009. Crop response to current and previous season applications of phosphorus as affected by crop sequence and tillage. Can. J. Plant Sci. 89(1): 49–66.
Gupta U.C., Kalra Y.P. 2006. Residual effect of copper and zinc from fertilizers on plant concentration, phytotoxicity, and crop yield response. Commun. Soil. Sci. Plant Anal. 37(15-20): 2505–2511.
Harris D., Horwath W.R., van Kessel C. 2001. Acid fumigation of soils to remove carbonates prior to total organic carbon or carbon-13 isotopic analysis. Soil Sci. Soc. Am. J. 65(6): 1853–1856.
Havlin J.L., Tisdale S.L., Nelson W.L., Beaton J.D. 2013. Soil fertility and fertilizers: an introduction to nutrient management. 8th ed. Prentice Hall, Upper Saddle River, NJ.
Hendershot W.H., Lalande H., Duquette M. 2007. Soil reaction and exchangeable acidity. In Soil Sampling and Methods of Analysis. 2nd ed., Chapter 16. Edited by M.R. Carter, E.G. Gregorich. CRC Press, Boca Raton, FL. pp. 173–178.
Indorante S.J., Follmer L.R., Hammer R.D., Koenig P.G. 1990. Particle-size analysis by a modified pipette procedure. Soil Sci. Soc. Am. J. 54(2): 560–563.
Jacquat O., Voegelin A., Villard A., Marcus M.A., Kretzschmar R. 2008. Formation of Zn-rich phyllosilicate, Zn-layered double hydroxide and hydrozincite in contaminated calcareous soils. Geochim. Cosmochim. Acta. 72(20): 5037–5054.
Jacquat O., Voegelin A., Kretzschmar R. 2009. Soil properties controlling Zn speciation and fractionation in contaminated soils. Geochim. Cosmochim. Acta. 73(18): 5256–5272.
Janssen R.P.T., Bruggenwert M.G.M., van Riemsdijk W.H., 2003. Zinc ion adsorption on montmorillonite-Al hydroxide polymer systems. Eur. J. Soil Sci. 54(2): 347–355.
Karamanos R.E., Kruger G.A., Stewart J.W.B. 1986. Copper deficiency in cereals and oilseed crops in Northern Canadian Prairie soils. Agron. J. 78(2): 317–323.
Karamanos R.E., Goh T.B., Harapiak J.T. 2003a. Determining wheat responses to copper in prairie soils. Can. J. Soil Sci. 83(2): 213–221.
Karamanos R.E., Walley F.L., Flaten P.L. 2005. Effectiveness of seedrow placement of granular copper products for wheat. Can. J. Soil Sci. 85(2): 295–306.
Kruger G.A., Karamanos R.E., Singh J.P. 1985. The copper fertility of Saskatchewan soils. Can. J. Soil Sci. 65(1): 89–99.
Lee C.W., Choi J.M., Pak. C.H. 1996. Micronutrient toxicity in seed geranium (Pelargonium × hortorum Baley). J. Am. Soc. Hort. Sci. 121(1): 77–82.
Lee Y.J., Elzinga E.J., Reeder R.J. 2005. Cu (II) adsorption at the calcite–water interface in the presence of natural organic matter: kinetic studies and molecular-scale characterization. Geochimi. Cosmochimi. Acta 69(1): 49–61.
Liang J., Stewart J.W.B., Karamanos R.E. 1991b. Distribution and plant availability of soil copper fractions in Saskatchewan. Can. J. Soil Sci. 71(1): 89–99.
Liang J., Karamanos R.E., Stewart J.W.B. 1991a. Plant availability of Zn fractions in Saskatchewan soils. Can. J. Soil Sci. 71(4): 507–517.
Lindsay W.L., Norvell W.A. 1978. Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Sci. Soc. Am. J. 42(3): 421–428.
Loneragan J.F., Webb M.J. 1993. Interactions between zinc and other nutrients affecting the growth of plants. In Zinc in soils and plants. Springer, Netherlands. pp. 119–134.
Luo Y., Rimmer D.L. 1995. Zinc–copper interaction affecting plant growth on a metal-contaminated soil. Environ. Pollut. 88(1): 79–83.
Malhi S.S., Karamanos R.E. 2006. A review of copper fertilizer management for optimum yield and quality of crops in the Canadian prairie provinces. Can. J. Plant Sci. 86(3): 605–619.
Malhi S.S., Vera C.L., Brandt S.A. 2015. Seed yield potential of five wheat species/cultivars without and with phosphorus fertilizer application on a P-deficient soil in northeastern Saskatchewan. Agr. Sci. 6(2): 224–231.
Manceau A., Lanson B., Schlegel M.L., Harge J.C., Musso M., Eybert-Berard L., 2000. Quantitative Zn speciation in smelter-contaminated soils by EXAFS spectroscopy. Am. J. Sci. 300(4): 289–343.
Maqsood M.A., Schoenau J., Vandenberg A. 2016. Zinc fertilization of lentil for grain yield and grain zinc concentration in ten Saskatchewan soils. J. Plant Nutr. 39(6): 866–874.
McKenzie R.H., Bremer E., Kryzanowski L., Middleton A.B., Solberg E.D., Heaney D., 2003. Yield benefit of phosphorus fertilizer for wheat, barley and canola in Alberta. Can. J. Soil Sci. 83(4): 431–441.
Miller J.J., Curtin D. 2007. Electrical conductivity and soluble ions. In Soil sampling and methods of analysis. 2nd ed. Chapter 15. Edited by M.R. Carter, E.G. Gregorich. CRC Press, Boca Raton, FL. pp. 161–164.
Mortvedt J.J. 2000. Bioavailability of micronutrients. Handbook of soil science. Edited by M.E. Sumner. CRC Press, Boca Raton. pp. 71–78.
Neue H.U., Lantin R.S. 1994. Micronutrient toxicities and deficiencies in rice. In Soil mineral stresses: approaches to crop improvement. Edited by A.R. Yeo, T.J. Flowers. Springer-Verlag, Berlin, pp. 175–200.
Qian P., Schoenau J.J., Karamanos R.E. 1994. Simultaneous extraction of available phosphorus and potassium with a new soil test—a modification of kelowna extraction. Commun. Soil Sci. Plant Anal. 25(5-6): 627–635.
Qian P., Schoenau J.J., Wu T., Mooleki S.P. 2003. Copper and zinc amounts and distribution in soil as influenced by application of animal manure in east-central Saskatchewan. Can. J. Soil Sci. 83(2): 197–202.
Rahman M.N., Hangs R., Schoenau J. 2020. Influence of soil temperature and moisture on micronutrient supply, plant uptake, and biomass yield of wheat, pea, and canola. J. Plant Nutri. 43: 823–833.
Rahman M.N., Schoenau J. 2021. Zinc and copper interactions under variable soil phosphorus and moisture conditions in selected Saskatchewan soils. J. Plant Nutri. 45(3): 311–331.
Rahman N., Schoenau J. 2020. Response of wheat, pea, and canola to micronutrient fertilization on five contrasting prairie soils. Sci. Rep. 10(1): 18818.
Ravel B., Newville M. 2005. Athena, Artemis, Hephaestus: data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Rad. 12(4): 537–541.
Refaey Y., Jansen B., El-Shater A.H., El-Haddad A.A., Kalbitz K. 2014. The role of dissolved organic matter in adsorbing heavy metals in clay-rich soils. Vadose Zone J. 13(7): 1–12.
Reuter D.J., Robinson J.B. 1997. Plant analysis: an interpretation manual. CSIRO Publishing. Collingwood, Victoria.
Reynolds S.G. 1970. The gravimetric method of soil moisture determination Part III an examination of factors influencing soil moisture variability. J. Hydrol. 11(3): 288–300.
SAS Inc. 2013. SAS 9.4 Intelligence platform: application server administration guide. SAS Institute Inc., Cary, NC.
Saxton A.M. 1998. A macro for converting mean separation output to letter groupings in Proc mixed. Proceedings of the 23rd SAS Users Group International. SAS Institute, Inc. Cary, NC.
Schlegel M.L., Manceau A., Charlet L., Hazemann J.L. 2001. Adsorption mechanisms of Zn on Hectorite as a function of time, pH, and Ionic strength. Am. J. Sci. 301(9): 798–830.
Silva M.L.D.S., Vitti G.C., Trevizam A.R. 2014. Heavy metal toxicity in rice and soybean plants cultivated in contaminated soil. Revista Ceres. 61(2): 248–254.
Singh J., Stewart J., Karamanos R. 1987. The zinc fertility of Saskatchewan soils. Can. J. Soil Sci. 67(1): 103–116.
Singh J.P., Karamanos R.E., Stewart J.W.B. 1986. Phosphorus-induced zinc deficiency in wheat on residual phosphorus plots. Agron. J. 78(4): 668–675.
Singh J.P., Karamanos R.E., Stewart J.W.B. 1988. The mechanism of phosphorus-induced zinc deficiency in bean (Phaseolus vulgaris l.). Can. J. Soil Sci. 68(2): 345–358.
Sparks D.L. 2005. Toxic metals in the environment: the role of surfaces. Elements, 1(4): 193–197.
Stanisławska-Glubiak E., Korzeniowska J. 2005. Effect of excessive zinc content in soil on the phosphorus content in wheat plants Electron. J. Pol. Agric. Univ. 8(4): 1–8.
Strawn D.G., Baker L.L. 2008. Speciation of Cu in a contaminated agricultural soil measured by XAFS, m-XAFS, and m-XRF. Environ. Sci. Technol. 42(1): 37–42.
Takkar P.N., Mann M.S. 1978. Toxic levels of soil and plant zinc for maize and wheat. Plant Soil. 49(3): 667–669.
Tani F.H., Barrington S. 2005. Zinc and copper uptake by plants under two transpiration rates. Part II. Buckwheat (Fagopyrum esculentum L.). Environ. Pollut. 138(3): 548–558.
Trivedi P., Axe L., Tyson T.A. 2001. An analysis of zinc sorption to amorphous versus crystalline iron oxides using XAS. J. Colloid Interf. Sci. 244(2): 230–238.
USEPA. 2007. Microwave assisted acid digestion of sediments, sludges, soils, and oils. Method 3051A. Environmental Protection Agency (USEPA), Washington, D.C.
Van Assche F., Clijsters H. 1990. Effects of metals on enzyme activity in plants. Plant Cell Environ. 13(3): 195–206.
Yadav S.K. 2010. Heavy metals toxicity in plants: an overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants. S. Afr. J. Bot. 76(2): 167–179.
Zemberyova M., Bartekova J., Hagarova I. 2006. The utilization of modified BCR three step sequential extraction procedure for the fractionation of Cd, Cr, Cu, Ni, Pb, and Zn in soil reference materials of different origins. Talanta, 70(5): 973–978.
Zentner R.P., Campbell C.A., Selles F. 1993. Build-up in soil available P and yield response of spring wheat to seed-placed P in a 24-year study in the Brown soil zone. Can. J. Soil Sci. 73(2): 173–181.
Ziadi N., Whalen J.K., Messiga A.J., Morel C. 2013. Assessment and modeling of soil available phosphorus in sustainable cropping systems. Adv. Agron. 122: 85–126.

Information & Authors

Information

Published In

cover image Canadian Journal of Soil Science
Canadian Journal of Soil Science
Volume 102Number 3September 2022
Pages: 797 - 809

History

Received: 30 November 2021
Accepted: 11 April 2022
Accepted manuscript online: 14 April 2022
Version of record online: 31 August 2022

Notes

This paper is part of a Collection entitled “Soil Health Evaluation: Methods and Directions”.

Permissions

Request permissions for this article.

Key Words

  1. copper
  2. zinc
  3. antagonism
  4. speciation
  5. spring wheat
  6. biomass yield

Mots-clés

  1. cuivre
  2. zinc
  3. antagonisme
  4. spéciation
  5. blé de printemps
  6. rendement de la biomasse

Authors

Affiliations

Noabur Rahman [email protected]
Department of Soil Science, University of Saskatchewan, Saskatoon, SK, Canada
Derek Peak
Department of Soil Science, University of Saskatchewan, Saskatoon, SK, Canada
Jeff Schoenau
Department of Soil Science, University of Saskatchewan, Saskatoon, SK, Canada

Author Contributions

N.R. conducted data collection, analysis, and wrote the manuscript. D.P. helped in XANES data collection and analyses, and J.S. supervised the project and review the manuscript.

Competing Interests

The authors declare no conflict of interest.

Funding Information

This work was funded by Western Grains Research Foundation and Agriculture and Agri-Food Canada Agri-Innovation Program.

Metrics & Citations

Metrics

Other Metrics

Citations

Cite As

Export Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

1. Trade-Off Strategy for Usage of Phosphorus Fertilizer in Calcareous Soil-Grown Winter Wheat: Yield, Phosphorus Use Efficiency, and Zinc Nutrition Response
2. Delineation of Micronutrient Deficient Zones in Agricultural Soils of Santa Ignacia, Tarlac
3. Zinc and nano zinc mediated alleviation of heavy metals and metalloids in plants: an overview

View Options

Login options

Check if you access through your login credentials or your institution to get full access on this article.

Subscribe

Click on the button below to subscribe to Canadian Journal of Soil Science

Purchase options

Purchase this article to get full access to it.

Restore your content access

Enter your email address to restore your content access:

Note: This functionality works only for purchases done as a guest. If you already have an account, log in to access the content to which you are entitled.

View options

PDF

View PDF

Full Text

View Full Text

Media

Tables

Media

Share Options

Share

Share the article link

Share on social media