Population genetics reveal Myotis keenii (Keen’s myotis) and Myotis evotis (long-eared myotis) to be a single species

Publication: Canadian Journal of Zoology
8 November 2018

Abstract

Recognizing delineations of gene flow among groups of animals can be challenging but is necessary for conservation and management. Of particular importance is the identification of species boundaries. Several physical and genetic traits have been used with mixed success to distinguish Myotis keenii (Merriam, 1895) (Keen’s myotis) and Myotis evotis (H. Allen, 1864) (long-eared myotis), but it is unclear whether species distinction is biologically warranted. We generated 12–14 microsatellite locus genotypes for 275 long-eared Myotis representing four species — M. keenii, M. evotis, Myotis septentrionalis (Trouessart, 1897) (northern myotis), and Myotis thysanodes Miller, 1897 (fringed myotis) — from across northwestern North America and 23 Myotis lucifugus (Le Conte, 1831) (little brown myotis) as the outgroup. Population genetic analyses revealed four well-defined groups (species): M. septentrionalis, M. thysanodes, M. lucifugus, and a single group comprising M. keenii and M. evotis. We document high rates of gene flow within M. evotis/M. keenii. Cytochrome b gene (mtDNA) sequencing failed to resolve morphologically identifiable species. We highlight the importance of geographically thorough investigation of genetic connectivity (nuclear markers) when assessing taxonomic status of closely related groups. We document a morphometric cline within M. evotis/M. keenii that may in part explain earlier analyses that led to the description of the smaller bodied M. keenii (type locality: Haida Gwaii). We conclude that M. keenii does not qualify as a genetic or biological species.

Résumé

Si elle peut s’avérer difficile, la détermination des tracés de flux de gènes entre groupes d’animaux est néanmoins nécessaire pour la conservation et la gestion. L’établissement des frontières entre espèces est particulièrement important. Si plusieurs caractères physiques et génétiques ont été utilisés avec un succès mitigé pour distinguer Myotis keenii (Merriam, 1895) (vespertilion de Keen) et Myotis evotis (H. Allen, 1864) (vespertilion à longues oreilles), la pertinence, du point de vue biologique, de distinguer ces deux espèces demeure incertaine. Nous avons produit des génotypes de 12–14 loci microsatellites pour 275 vespertilions à longues oreilles représentant quatre espèces — M. keenii, M. evotis, Myotis septentrionalis (Trouessart, 1897) (vespertilion nordique) et Myotis thysanodes Miller, 1897 (vespertilion à queue frangée) — provenant de tout le nord-ouest de l’Amérique du Nord et 23 Myotis lucifugus (Le Conte, 1831) (vespertilion brun) hors groupe. Les analyses de la génétique des populations révèlent quatre groupes bien définis, à savoir M. septentrionalis, M. thysanodes, M. lucifugus et un seul groupe comprenant M. keenii et M. evotis. Nous documentons des taux élevés de flux génétique au sein de M. evotis/M. keenii. Le séquençage du gène du cytochrome b (ADNmt) ne permet pas de distinguer des espèces identifiables sur une base morphologique. Nous soulignons l’importance d’un examen géographiquement exhaustif de la connectivité génétique (marqueurs génétiques) pour l’évaluation du statut taxonomique de groupes étroitement reliés. Nous documentons un cline morphométrique au sein de M. evotis/M. keenii qui pourrait en partie expliquer des analyses passées qui ont mené à la description du plus petit M. keenii (localité type : Haida Gwaii). Nous concluons que M. keenii ne constitue pas une espèce génétique ou biologique. [Traduit par la Rédaction]

Get full access to this article.

View all available purchase options and get full access to this article.

References

Alvarez-Castañeda S.T. and Bogan M.A. 1997. Myotis milleri. Mamm. Species, 561: 1–3.
Avise, J.C. 2004. Molecular markers, natural history and evolution. 2nd ed. Sinauer Associates, Inc., Sunderland, Mass.
Baker R.J. and Bradley R.D. 2006. Speciation in mammals and the genetic species concept. J. Mammal. 87(4): 643–662.
Barratt E.M., Deaville R., Burland T.M., Bruford M.W., Jones G., Racey P.A., and Wayne R.K. 1997. DNA answers the call of pipistrelle bat species. Nature, 387(6629): 128–139.
Belkhir, K. 1999. GENETIX, v.4.0. Laboratoire Génome, Populations, Interactions. CNRS UPR, Université Montpelier, Montpelier, France. [In French.]
Bogdanowicz W. 1990. Geographic variation and taxonomy of Daubenton’s bat, Myotis daubentoni in Europe. J. Mammal. 71(2): 205–218.
Burns L.E., Broders H.G., and Frasier T.R. 2012. Characterization of 11 tetranucleotide microsatellite loci for the little brown bat (Myotis lucifugus) based on in silico genome sequences. Conserv. Genet. Res. 4(3): 653–655.
Carstens B.C. and Dewey T.A. 2010. Species delimitation using a combined coalescent and information–theoretic approach: an example from North American Myotis bats. Syst. Biol. 59(4): 400–414.
Castella V. and Ruedi M. 2000. Characterization of highly variable microsatellite loci in the bat Myotis myotis (Chiroptera: Vespertilionidae). Mol. Ecol. 9(7): 1000–1002.
COSEWIC. 2003. COSEWIC assessment and update status report on Keen’s long-eared bat Myotis keenii in Canada. Committee on the Status of Endangered Wildlife in Canada, Ottawa, Ont.
Cowan, I., McT., and Guiguet, C.J. 1965. The mammals of British Columbia. BC Prov. Mus. Handb. No. 11, Victoria, B.C.
Cronin M.A., Amstrup S.C., Garner G.W., and Vyse E.R. 1991. Interspecific and intraspecific mitochondrial DNA variation in North American bears (Ursus). Can. J. Zool. 69(12): 2985–2992.
Davis W.H. 1967. Long-eared Myotis of the Pacific Northwest. Bat Res. News, 8(4): 31–52.
Demboski J.R. and Cook J.A. 2001. Phylogeography of the dusky shrew, Sorex monticolus (Insectivora, Soricidae): insight into deep and shallow history in northwestern North America. Mol. Ecol. 10(5): 1227–1240.
Dewey, T.A. 2006. Systematics and phylogeography of North American Myotis (Chiroptera: Vespertilionidae). Ph.D. thesis, University of Michigan, Ann Arbor. Available from http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqm&rft_dat=xri:pqdiss:3208448 [accessed 10 April 2018].
Elias M., Hill R.I., Willmott K.R., Dasmahapatra K.K., Brower A.V., Mallet J., and Jiggins C.D. 2007. Limited performance of DNA barcoding in a diverse community of tropical butterflies. Proc. R. Soc. B Biol. Sci. 274(1627): 2881–2889.
Evanno G., Regnaut S., and Goudet J. 2005. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol. Ecol. 14(8): 2611–2620.
Felsenstein, J. 2005. PHYLIP: phylogenetic inference program. Version 3.6. University of Washington, Seattle. Available from http://evolution.genetics.washington.edu/phylip.html.
Felsenstein J. and Churchill G.A. 1996. A Hidden Markov Model approach to variation among sites in rate of evolution. Mol. Biol. Evol. 13(1): 93–104.
Firman, M., and Barclay, R.M.R. 1993. Status of Keen’s long-eared myotis in British Columbia. British Columbia Ministry of Environment, Lands and Parks, Fish and Wildlife Branch, Victoria. Working Rep. WR-59.
Fitch J.H. and Shump K.A. 1979. Myotis keenii. Mamm. Species, 121: 1–3.
Garnier-Gere P. and Dillmann C. 1992. A computer program for testing pairwise linkage disequilibria in subdivided populations. J. Hered. 83(3): 239.
Genoways H.H. and Jones J.K. Jr 1969. Taxonomic status of certain long-eared bats (genus Myotis) from the southwestern United States and Mexico. Southwest. Nat. 14(1): 1–13.
Goldstein, D.B., and Schlotterer, C. 1999. Microsatellites: evolution and applications. Oxford University Press, Oxford.
Goldstein P.Z., Desalle R., Amato G., and Vogler A.P. 2000. Conservation genetics at the species boundary. Conserv. Biol. 14(1): 120–131.
Grindal S.D., Stefan C.I., and Godwin-Sheppard C. 2011. Diversity, distribution, and relative abundance of bats in the oil sands regions of northeastern Alberta. Northwest. Nat. 92(3): 211–220.
Harvey, M.J., Altenbach, J.S., and Best, T.L. 2011. Bats of the United States and Canada. Johns Hopkins University Press, Baltimore, Md.
Hayes, G., and Wiles, G.J. 2013. Washington bat conservation plan. Washington Department of Fish and Wildlife, Olympia.
Hoofer S.R. and Van Den Bussche R.A. 2003. Molecular phylogenetics of the chiropteran family Vespertilionidae. Acta Chiropt. 5(Suppl. 1): 1–63.
Irwin D.M., Kocher T.D., and Wilson A.C. 1991. Evolution of the cytochrome b gene of mammals. J. Mol. Evol. 32(2): 128–144.
Jukes, T.H., and Cantor, C.R. 1969. Evolution of protein molecules. In Mammalian protein metabolism. Edited by R.E. Munro. Academic Press, New York. pp. 21–132.
Kawai K., Nikaido M., Harada M., Matsumura S., Lin L.K., Wu Y., Hasegawa M., and Okada N. 2003. The status of the Japanese and East Asian bats of the genus Myotis (Vespertilionidae) based on mitochondrial sequences. Mol. Phylogenet. Evol. 28(2): 297–307.
Kishino H. and Hasegawa M. 1989. Evaluation of the maximum likelihood estimate of the evolutionary tree topologies from DNA sequence data, and the branching order in Hominoidea. J. Mol. Evol. 29(2): 170–179.
Lausen C.L., Delisle I., Barclay R.M.R., and Strobeck C. 2008. Beyond mtDNA: nuclear gene flow suggests taxonomic oversplitting in the little brown bat (Myotis lucifugus). Can. J. Zool. 86(7): 700–713.
Lindsay D.L., Jung M.G., and Lance R.F. 2013. Novel microsatellite loci to investigate population structure in the endangered gray bat (Myotis grisescens). Conserv. Genet. Res. 5(4): 1055–1057.
Lowe, A.J., Harris, S.A., and Ashton, P. 2004. Ecological genetics: design, analysis and application. Blackwell Publishing, Oxford, U.K.
Manning R.W. 1993. Systematics and evolutionary relationships of the long-eared myotis, Myotis evotis (Chiroptera: Vespertilonidae). Spec. Publ., The Museum, Texas Tech Univ. 37: 1–58.
Mayer F., and von and Helversen O. 2001. Cryptic diversity in European bats. Proc. R. Soc. B Biol. Sci. 268(1478): 1825–1832.
Mayr, E. 1969. Principles of systematic zoology. McGraw-Hill, New York.
Merriam C.H. 1895. Bats of the Queen Charlotte Islands, British Columbia. Am. Nat. 29(345): 860–861.
Miller G.S. and Allen G.M. 1928. The American bats of the genera Myotis and Pizonyx. Bull. U.S. Natl. Mus. 144: 1–218.
Morales A.E. and Carstens B.C. 2018. Evidence that Myotis lucifugus ‘subspecies’ are five non-sister species, despite gene flow. Syst. Biol. 67(5): 756–769.
Morales A.E., Jackson N.D., Dewey T.A., O’Meara B.C., and Carstens B.C. 2017. Speciation with gene flow in North American Myotis bats. Syst. Biol. 66(3): 440–452.
Nagorsen, D.W. 2002. An identification manual to the small mammals of British Columbia. British Columbia Ministry of Sustainable Resource Management, Victoria. Available from http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.214.2565&rep=rep1&type=pdf [accessed 10 April 2018].
Nagorsen, D.W., and Brigham, R.M. 1993. Bats of British Columbia. Vol. 1. UBC Press, Vancouver.
NatureServe. 2018. NatureServe Explorer: an online encyclopedia of life [web application]. Version 7.1. NatureServe, Arlington, Va. Available from http://explorer.natureserve.org [accessed 22 July 2018.]
Naughton, D. 2012. The natural history of Canadian mammals. University of Toronto Press, Toronto, Ont.
Norberg, U. 1994. Wing design, flight morphology, and habitat use in bats. In Ecological morphology. Edited by P.C. Wainright and S.M. Reilly. Chicago University Press, Chicago, Ill. pp. 205–239.
Oyler-McCance S.J. and Fike J.A. 2011. Characterization of small microsatellite loci isolated in endangered Indiana bat (Myotis sodalis) for use in non-invasive sampling. Conserv. Genet. Res. 3(2): 243–245.
Paetkau D. 2003. An empirical exploration of data quality in DNA-based population inventories. Mol. Ecol. 12(6): 1375–1387.
Paetkau D., Shields G.F., and Strobeck C. 1998. Gene flow between insular, coastal and interior populations of brown bears in Alaska. Mol. Ecol. 7(10): 1283–1292.
Platt R.N. II, Faircloth B.C., Sullivan K.A.M., Kieran T.J., Glenn T.C., Vandewege M.W., Lee T.E. Jr, Baker R.J., Stevens R.D., and Ray D.A. 2018. Conflicting evolutionary histories of the mitochondrial and nuclear genomes in New World Myotis bats. Syst. Biol. 67(2): 236–249.
Player D., Lausen C., Zaitlin B., Harrison J., Paetkau D., and Harmston E. 2017. An alternative minimally invasive technique for genetic sampling of bats: wing swabs yield species identification. Wildl. Soc. Bull. 41(3): 590–596.
Pritchard J.K., Stephens M., and Donnelly P. 2000. Inference of population structure using multilocus genotype data. Genetics, 155(2): 945–959.
Proctor M.F., Paetkau D., McLellan B.N., Stenhouse G.B., Kendall K.C., Mace R.D., Kasworm W.F., Servheen C., Lausen C.L., Gibeau M.L., Wakkinen W.L., Haroldson M.A., Mowat G., Apps C.D., Ciarniello L.M., Barclay R.M.R., Boyce M.S., Schwartz C.C., and Strobeck C. 2012. Population fragmentation and inter-ecosystem movements of grizzly bears in western Canada and the northern United States. Wildl. Monogr. 180(1): 1–46.
Puechmaille S.J. 2016. The program structure does not reliably recover the correct population structure when sampling is uneven: subsampling and new estimators alleviate the problem. Mol. Ecol. Res. 16(3): 608–627.
Racey P.A., Barratt E.M., Burland T.M., Deaville R., Gotelli D., Jones G., and Piertney S.B. 2007. Microsatellite DNA polymorphism confirms reproductive isolation and reveals differences in population genetic structure of cryptic pipistrelle bat species. Biol. J. Linn. Soc. 90(3): 539–550.
Raymond M. and Rousset F. 1995. GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J. Hered. 86(3): 248–249.
Rousset F. and Raymond M. 1995. Testing heterozygote excess and deficiency. Genetics, 140(4): 1413–1419.
Ruedi M. and Mayer F. 2001. Molecular systematics of bats of the genus Myotis (Vespertilionidae) suggests deterministic ecomorphological convergences. Mol. Phylogenet. Evol. 21(3): 436–448.
Saitou N. and Nei M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4(4): 406–425.
Simmons, N.B. 2005. Order Chiroptera: mammal species of the world: a taxonomic and geographic reference. In Mammal species of the world. Edited by D.E. Wilson and D.M. Reeder. Johns Hopkins University Press, Baltimore, Md. pp. 312–529.
Sokal, R.R., and Rohlf, F.J. 1995. Biometry: the principles and practice of statistics in biological research. 3rd ed. W.H. Freeman and Company, New York.
Stadelmann B., Lin L.K., Kunz T.H., and Ruedi M. 2007. Molecular phylogeny of New World Myotis (Chiroptera, Vespertilionidae) inferred from mitochondrial and nuclear DNA genes. Mol. Phylogenet. Evol. 43(1): 32–48.
Talbot S.L. and Shields G.F. 1996. Phylogeography of brown bears (Ursus arctos) of Alaska and paraphyly within the Ursidae. Mol. Phylogenet. Evol. 5(3): 477–494.
Trujillo R.G. and Amelon S.K. 2009. Development of microsatellite markers in Myotis sodalis and cross-species amplification in M. gricescens, M. leibii, M. lucifugus, and M. septentrionalis. Conserv. Genet. 10(6): 1965.
van Zyll de Jong C.G. 1979. Distribution and systematic relationships of long-eared Myotis in western Canada. Can. J. Zool. 57(5): 987–994.
van Zyll de Jong, C.G. 1985. Handbook of Canadian mammals. Vol. 2. Bats. National Museum of Natural Sciences, Ottawa, Ont.
van Zyll de Jong C.G. and Nagorsen D.W. 1994. A review of the distribution and taxonomy of Myotis keenii and Myotis evotis in British Columbia and the adjacent United States. Can. J. Zool. 72(6): 1069–1078.
Wheeler, Q., and Meier, R. (Editors). 2000. Species concepts and phylogenetic theory: a debate. Columbia University Press, New York.
Wilson, D.E., and Reeder, D.M. (Editors). 2005. Mammal species of the world: a taxonomic and geographic reference. Vol. 1. Johns Hopkins University Press, Baltimore, Md.
Worthington Wilmer J., Moritz C., Hall L., and Toop J. 1994. Extreme population structuring in the threatened ghost bat, Macroderma gigas: evidence from mitochondrial DNA. Proc. R. Soc. B Biol. Sci. 257(1349): 193–198.
Worthington Wilmer J., Hall L., Barratt E., and Moritz C. 1999. Genetic structure and male-mediated gene flow in the ghost bat (Macroderma gigas). Evolution, 53(5): 1582–1591.

Supplementary Material

Supplementary data (cjz-2018-0113suppla.docx)

Information & Authors

Information

Published In

cover image Canadian Journal of Zoology
Canadian Journal of Zoology
Volume 97Number 3March 2019
Pages: 267 - 279

History

Received: 21 April 2018
Accepted: 27 September 2018
Published online: 8 November 2018

Permissions

Request permissions for this article.

Key Words

  1. Myotis keenii
  2. Keen’s myotis
  3. Myotis evotis
  4. long-eared myotis
  5. Myotis thysanodes
  6. fringed myotis
  7. Myotis septentrionalis
  8. northern myotis
  9. Myotis lucifugus
  10. little brown myotis
  11. microsatellites
  12. taxonomy

Mots-clés

  1. Myotis keenii
  2. vespertilion de Keen
  3. Myotis evotis
  4. vespertilion à longues oreilles
  5. Myotis thysanodes
  6. vespertilion à queue frangée
  7. Myotis septentrionalis
  8. vespertilion nordique
  9. Myotis lucifugus
  10. vespertilion brun
  11. microsatellites
  12. taxonomie

Authors

Affiliations

Cori L. Lausen corilausen@netidea.com
Wildlife Conservation Society Canada, P.O. Box 606, Kaslo, BC V0G 1M0, Canada.
Michael Proctor
Birchdale Ecological Ltd., P.O. Box 606, Kaslo, BC V0G 1M0, Canada.
David W. Nagorsen
Royal British Columbia Museum, 675 Belleville Street, Victoria, BC V8W 9W2, Canada.
Doug Burles*
Parks Canada, Gwaii Haanas National Park Reserve and Haida Heritage Site, Queen Charlotte, BC V0T 1S0, Canada.
David Paetkau
Wildlife Genetics International, #200-182 Baker Street, Nelson, BC V1L 4H2, Canada.
Erin Harmston
Wildlife Genetics International, #200-182 Baker Street, Nelson, BC V1L 4H2, Canada.
Karen Blejwas
Alaska Department of Fish and Game, 802 3rd Street, Douglas, AK 99824, USA.
Purnima Govindarajulu
BC Ministry of Environment and Climate Change Strategy, 4th Floor-525 Superior Street, Victoria, BC V8V 0C5, Canada.
Laura Friis
BC Ministry of Environment and Climate Change Strategy (retired).

Notes

*
Present address: 1038 Pine Springs Road, Kamloops, BC V2B 8A8, Canada.
Present address: 1270 Johnson Street 305, Victoria, BC V8V 3P1, Canada.
Copyright remains with the author(s) or their institution(s). Permission for reuse (free in most cases) can be obtained from RightsLink.

Metrics & Citations

Metrics

Other Metrics

Citations

Cite As

Export Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

1. Reply to the comment by Morales et al. on “Population genetics reveal Myotis keenii (Keen’s myotis) and Myotis evotis (long-eared myotis) to be a single species”1
2. Comment on “Population genetics reveal Myotis keenii (Keen’s myotis) and Myotis evotis (long-eared myotis) to be a single species”1
3. Wildlife forensics: A boon for species identification and conservation implications
4. Genetic assays for guano-based identification of species and sex in bats of the United States and Canada

View Options

Get Access

Login options

Check if you access through your login credentials or your institution to get full access on this article.

Subscribe

Click on the button below to subscribe to Canadian Journal of Zoology

Purchase options

Purchase this article to get full access to it.

Restore your content access

Enter your email address to restore your content access:

Note: This functionality works only for purchases done as a guest. If you already have an account, log in to access the content to which you are entitled.

View options

PDF

View PDF

Full Text

View Full Text

Media

Media

Other

Tables

Share Options

Share

Share the article link

Share with email

Email a colleague

Share on social media