Cookies Notification

We use cookies to improve your website experience. To learn about our use of cookies and how you can manage your cookie settings, please see our Cookie Policy.
×

Ecological correlates of fecal corticosterone metabolites in female Greater Sage-Grouse (Centrocercus urophasianus)

Publication: Canadian Journal of Zoology
12 July 2021

Abstract

Measurement of physiological responses can reveal effects of ecological conditions on an animal and correlate with demographic parameters. Ecological conditions for many animal species have deteriorated as a function of invasive plants and habitat fragmentation. Expansion of juniper (genus Juniperus L.) trees and invasion of annual grasses into sagebrush (genus Artemisia L.) ecosystems have contributed to habitat degradation for Greater Sage-Grouse (Centrocercus urophasianus (Bonaparte, 1827); hereinafter Sage-Grouse), a species of conservation concern throughout its range. We evaluated relationships between habitat use in a landscape modified by juniper expansion and annual grasses and corticosterone metabolite levels (stress responses) in feces (FCORTm) of female Sage-Grouse. We used remotely sensed data to estimate vegetation cover within the home ranges of hens and accounted for factors that influence FCORTm in other vertebrates, such as age and weather. We collected 35 fecal samples from 22 radio-collared hens during the 2017–2018 brood-rearing season (24 May–26 July) in southwestern Idaho (USA). Concentrations of corticosterone increased with home range size but decreased with reproductive effort and temperature. The importance of home range size suggests that maintaining or improving habitats that promote smaller home ranges would likely facilitate a lower stress response by hens, which should benefit Sage-Grouse survival and reproduction.

Résumé

La mesure de réactions physiologiques peut révéler des effets de conditions écologiques sur un animal et être corrélée à des paramètres démographiques. Les conditions écologiques pour de nombreuses espèces animales se sont dégradées en raison de plantes envahissantes et de la fragmentation des habitats. L’expansion des genévriers (genre Juniperus L.) et l’envahissement de graminées annuelles dans les écosystèmes à armoises (genre Artemisia L.) ont contribué à la dégradation des habitats pour le tétras des armoises (Centrocercus urophasianus (Bonaparte, 1827)), une espèce dont la conservation est préoccupante dans toute son aire de répartition. Nous évaluons les relations entre l’utilisation de l’habitat dans un paysage modifié par l’expansion des genévriers et des graminées annuelles et les concentrations de métabolites de corticostérone (réaction de stress) dans les fèces (FCORTm) de tétras des armoises femelles. Nous utilisons des données de télédétection pour estimer le couvert végétal à l’intérieur des domaines vitaux des femelles et intégrons des facteurs qui influencent la FCORTm chez d’autres vertébrés, comme l’âge et la météo. Nous avons prélevé 35 échantillons fécaux de 22 femelles dotés d’un collier émetteur durant la période de soins à la couvée (du 24 mai au 26 juillet) dans le sud-ouest de l’Idaho (États-Unis), en 2017–2018. Les concentrations de corticostérone augmentent parallèlement à la taille du domaine vital, mais diminuent parallèlement à l’effort de reproduction et à la température. L’importance de la taille du domaine vital donne à penser que le maintien ou l’amélioration des habitats qui favorisent de plus petits domaines vitaux se traduirait vraisemblablement par des réactions de stress moins fortes chez les femelles, ce qui devrait être bénéfique pour la survie et la reproduction des tétras des armoises. [Traduit par la Rédaction]

Get full access to this article

View all available purchase options and get full access to this article.

References

Abáigar T., Domené M.A., and Palomares F. 2010. Effects of fecal age and seasonality on steroid hormone concentration as a reproductive parameter in field studies. Eur. J. Wildl. Res. 56: 781–787.
Alm M., Holm L., Tauson R., and Wall H. 2014. Corticosterone metabolites in laying hen droppings—Effects of fiber enrichment, genotype, and daily variations. Poult. Sci. 93: 2615–2621.
Ammann G.A. 1944. Determining the age of pinnated and sharp-tailed grouse. J. Wildl. Manage. 8(2): 170–171.
Andersson M., Wallander J., and Isaksson D. 2009. Predator perches: a visual search perspective. Funct. Ecol. 23: 373–379.
Arlettaz R.L., Nussle S.B., Baltic M., Vogel P., Palme R., Jenni-Eiermann S., et al. 2015. Disturbance of wildlife by outdoor winter recreation: allostatic stress response and altered activity–energy budgets. Ecol. Appl. 25(5): 1197–1212.
Arnold T.W. 2010. Uninformative parameters and model selection using Akaike’s information criterion. J. Wildl. Manage. 74: 1175–1178.
Baker M.R., Gobush K.S., and Vynne C.H. 2013. Review of factors influencing stress hormones in fish and wildlife. J. Nat. Conserv. 21: 309–318.
Baltic M., Jenni-Eiermann S., Arlettaz R., and Palme R. 2005. A noninvasive technique to evaluate human-generated stress in the black grouse. Ann. N.Y. Acad. Sci. 1046: 81–95.
Baruch-Mordo S., Evans J.S., Severson J.P., Naugle D.E., Maestas J.D., Kiesecker J.M., et al. 2013. Saving sage-grouse from the trees: a proactive solution to reducing a key threat to a candidate species. Biol. Conserv. 167: 233–241.
Bates D., Maechler M., Bolker B., and Walker S. 2015. Fitting linear mixed-effects model using lme4. J. Stat. Softw. 67(1): 1–48.
Bates J.D., Miller R.F., and Svejcar T.J. 2000. Understory dynamics in cut and uncut western juniper woodlands. J. Range Manage. 53(1): 119–126.
Bêty J., Gauthier G., and Giroux J. 2003. Body condition, migration, and timing of reproduction in snow geese: a test of the condition-dependent model of optimal clutch size. Am. Nat. 162(1): 110–121.
Billings, W.D. 1994. Ecological impacts of cheatgrass and resultant fire on ecosystems in the western great basin. In Proceedings on Ecology, Management, and Restoration of Intermountain Annual Rangelands, Boise, Idaho, 18–22 May 1992. pp. 22–30.
Blickley J.L., Word K.R., Krakauer A.H., Phillips J.L., Sells S.N., Taff C.C., et al. 2012. Experimental chronic noise is related to elevated fecal corticosteroid metabolites in lekking male greater sage-grouse (Centrocercus urophasianus). PLoS ONE, 7(11): e50462.
Bonier F., Moore I.T., Martin P.R., and Robertson R.J. 2009. The relationship between fitness and baseline glucocorticoids in a passerine bird. Gen. Comp. Endocrinol. 163: 208–213.
Boonstra R., Hik D., Singleton G.R., and Tinnikov A. 1998. The impact of predator-induced stress on the snowshoe hare cycle. Ecol. Monogr. 79(5): 371–394.
Boyd C.S., Kerby J.D., Svejcar T.J., Bates J.D., Johnson D.D., and Davies W. 2017. The sage-grouse habitat mortgage: Effective conifer management in space and time. Rangel. Ecol. Manage. 70(1): 141–148.
Braun, C.E. 1998. Sage-grouse declines in western North America: What are the problems? In Proceedings of the Western Association of State Game and Fish Commissioners. 78. pp. 139–156.
Brooks M.L., D’Antonio C.M., Richardson D.M., Grace J.B., Keeley J.E., Ditomaso J.M., et al. 2004. Effects of invasive alien plants on fire regimes. BioScience, 54(7): 677–688.
Brown, J., Walker, S., and Steinman, K. 2003. Endocrine manual for reproductive assessment of domestic and non-domestic species. Smithsonian National Zoological Park, Conservation and Research Center, Washington, D.C. [Internal publication.]
Bunting, S.C., Kingery, J.L., and Strand, E. 1999. Effects of succession on species richness of the Western Juniper Woodland Sagebrush Steppe Mosaic. In USDA Forest Service Proceedings RMRS-P. Vol. 9. pp. 76–81.
Burnham K.P. and Anderson D.R. 2004. Multimodel inference. Soc. Met. Res. 33(2): 261–304.
Busch D.S. and Hayward L.S. 2009. Stress in a conservation context: A discussion of glucocorticoid actions and how levels change with conservation-relevant variables. Biol. Conserv. 142: 2844–2853.
Casazza M.L., Coates P.S., and Overton C.T. 2011. Linking habitat selection and brood success in greater sage-grouse. Ecology, Conservation, and Management of Grouse. Stud. Avian Biol. 39: 151–167.
Cattarino L., McAlpine C.A., and Rhodes J.R. 2016. Spatial scale and movement behaviour traits control the impacts of habitat fragmentation on individual fitness. J. Anim. Ecol. 85: 168–177.
Chambers J.C., Bradley B.A., Brown C.S., D’Antonio C., Germino M.J., and Grace J.B. 2014. Resilience to stress and disturbance, and resistance to Bromus tectorum L. invasion in cold desert shrublands of western North America. Ecology, 17: 360–375.
Chastel O., Weimerskirch H., and Jouventin P. 1995. Influence of body condition on reproductive decision and reproductive success in the blue petrel. Auk, 112(4): 964–972.
Clinchy M., Zanette L., Boonstra R., Wingfield J.C., and Smith J.N.M. 2004. Balancing food and predator pressure induces chronic stress in songbirds. Proc. R Soc. B Biol. Sci. 271: 2473–2479.
Coates P.S., Connelly J.W., and Delehanty D.J. 2008. Predators of greater sage-grouse nests identified by video monitoring. J. Field. Ornithol. 79(4): 421–428.
Coates P.S., Howe K.B., Casazza M.L., and Delehanty D.J. 2014. Landscape alterations influence differential habitat use of nesting buteos and ravens within sagebrush ecosystem: Implications for transmission line development. Condor, 116(3): 341–356.
Coates P.S., Prochazka B.G., Ricca M.A., Ben Gustafson K., Ziegler P., and Casazza M.L. 2017. Pinyon and juniper encroachment into sagebrush ecosystems impacts distribution and survival of greater sage-grouse. Rangel. Ecol. Manage. 70: 25–38.
Connelly J.W., Browers H.W., and Gates R.J. 1988. Seasonal movements of sage grouse in southeastern Idaho. J. Wildl. Manage. 52(1): 116–122.
Connelly J.W., Schroeder M.A., Sands A.R., and Braun C.E. 2000. Guidelines to manage sage grouse populations and their habitats. Wildl. Soc. Bull. 28(4): 967–985.
Connelly, J.W., Hagen, C.A., and Schroeder, M.A. 2011. Characteristics and dynamics of greater sage-grouse populations. In Greater sage-grouse: Ecology and conservation of a landscape species and its habitats. Edited by S.T. Knick and J.W. Connelly. University of California Press, Berkeley. pp. 53–67.
Coppes J., Kämmerle J., Willert M., Kohnen A., Palme R., and Braunisch V. 2018. The importance of individual heterogeneity for interpreting faecal glucocorticoid metabolite levels in wildlife studies. J. Appl. Ecol. 55: 2043–2054.
Crawford J.A., Olson R.A., West N.E., Mosley J.C., Michael A., Whitson T.D., et al. 2004. Ecology and management of sage-grouse and sage-grouse habitat. J. Range Manage. 57: 2–19.
Curran M.F., Crow T.M., Hufford K.M., and Stahl P.D. 2015. Forbs and greater sage-grouse habitat restoration efforts: suggestions for improving commercial seed availability and restoration practices. Rangelands, 37(6): 211–216.
Davies K.W., Boyd C.S., Beck J.L., Bates J.D., Svejcar T.J., and Gregg M.A. 2011. Saving the sagebrush sea: An ecosystem conservation plan for big sagebrush plant communities. Biol. Conserv. 144: 2573–2584.
Devries J.H., Brook R.W., Howerter D.W., and Anderson M.G. 2008. Effects of spring body condition and age on reproduction in mallards (Anas platyrhynchos). Auk, 125(3): 618–628.
Dinkins J.B., Conover M.R., Kirol C.P., and Beck J. 2012. Greater sage-grouse (Centrocercus urophasianus) select nest sites and brood sites away from avian predators. Auk, 129(4): 600–610.
Dunbar M.R., Gregg M.A., Crawford J.A., Giordano M.R., and Tornquist S.J. 2005. Normal hematologic and biochemical values for prelaying greater sage grouse (Centrocercus Urophasianus) and their influence on chick survival. J. Zoo Wildl. Med. 36(3): 422–429.
Eikenaar C., Müller F., Klinner T., and Bairlein F. 2015. Baseline corticosterone levels are higher in migrating than sedentary common blackbirds in autumn, but not in spring. Gen. Comp. Endocrinol. 224: 121–125.
Falkowski M.J., Evans J.S., Naugle D.E., Hagen C.A., Carleton S.A., Maestas J.D., et al. 2017. Mapping tree canopy cover in support of proactive prairie grouse conservation in western North America. Rangel. Ecol. Manage. 70: 15–24.
Frigerio D., Dittami J., Mostl E., and Kotrschal K. 2004. Excreted metabolites co-vary with ambient temperature and air pressure in male greylag geese (Anser anser). Gen. Comp. Endocrinol. 137: 29–36.
Fuhlendorf S.D., Woodward A.J.W., Leslie D.M., and Shackford J.S. 2002. Multi-scale effects of habitat loss and fragmentation on lesser prairie-chicken populations of the US Southern Great Plains. Landsc. Ecol. 17: 617–628.
Gao S., Sanchez C., and Deviche P.J. 2017. Corticosterone rapidly suppresses innate immune activity in the house sparrow (Passer domesticus). J. Exp. Biol. 220: 322–327.
Gardiner R., Proft K., Comte S., Jones M., and Johnson C.N. 2019. Home range size scales to habitat amount and increasing fragmentation in a mobile woodland specialist. Ecol. Evol. 9: 14005–14014.
Gibson D., Blomberg E.J., Atamian M.T., and Sedinger J.S. 2015. Observer effects strongly influence estimates of daily nest survival probability but do not substantially increase rates of nest failure in greater sage-grouse. Auk. 132: 397–407.
Giesen K.M., Schoenberg T.J., and Braun C.E. 1982. Methods for trapping sage grouse in Colorado. Wildl. Soc. Bull. 10: 224–231.
Glucs Z.E., Smith D.R., Tubbs C.W., Jones Scherbinski J., Welch A., Burnett J., et al. 2018. Glucocorticoid measurement in plasma, urates, and feathers from California condors (Gymnogyps californianus) in response to a human-induced stressor. PLoS ONE, 13(10): e0205565.
Goymann W. and Trappschuh M. 2011. Seasonal and diel variation of hormone metabolites in European stonechats: On the importance of high signal-to-noise ratios in noninvasive hormone studies. J. Biol. Rhythms, 26(1): 44–54.
Gustafson K.B., Coates P.S., Roth C.L., Chenaille M.P., Ricca M.A., Sanchez-Chopitea E., and Casazza M.L. 2018. Using object-based image analysis to conduct high-resolution conifer extraction at regional spatial scales. Int. J. Appl. Earth Obs. Geoinf. 73: 148–155.
Hagen C.A., Connelly J.W., and Schroeder M.A. 2007. A meta-analysis of greater sage-grouse Centrocercus urophasianus nesting and brood-rearing habitats. Wildl. Biol. 13(Suppl. 1): 42–50.
Hall L.S., Krausman P.R., and Morrison M.L. 1997. The habitat concept and a plea for standard terminology. Wildl. Soc. Bull. 25(1): 173–182. Available from https://www.jstor.org/stable/3783301.
Harms N.J., Fairhurst G.D., Bortolotti G.R., and Smits J.E.G. 2010. Variation in immune function, body condition, and feather corticosterone in nestling tree swallows (Tachycineta bicolor) on reclaimed wetlands in the Athabasca oil sands. Alberta, Canada. Environ. Pollut. 158: 841–848.
Hayward L.S., Richardson J.B., Grogan M.N., and Wingfield J.C. 2006. Sex differences in the organizational effects of corticosterone in the egg yolk of quail. Gen. Comp. Endocrinol. 146: 144–148.
Hayward L.S., Booth R.K., and Wasser S.K. 2010. Eliminating the artificial effect of sample mass on avian fecal hormone metabolite concentration. Gen. Comp. Endocrinol. 169(2): 117–122.
Hollister, J.W., and Shah, T. 2017. elevatr: Access elevation data from various. APIs. R package version 0.4.1. Available from https://github.com/jhollist/elevatr/.
Janin A., Lena J., and Joly P. 2011. Beyond occurrence: Body condition and stress hormone as integrative indicators of habitat availability and fragmentation in the common toad. Biol. Conserv. 144: 1008–1016.
Jankowski M.D., Wittwer D.J., Heisey D.M., Franson J.C., and Hofmeister E.K. 2009. The adrenocortical response of greater sage grouse (Centrocercus urophasianus) to capture, ACTH injection, and confinement, as measured in fecal samples. Physiol. Biochem. Zool. 82(2): 190–201.
Jankowski M.D., Russell R.E., Franson J.C., Dusek R.J., Hines M.K., Gregg M., and Hofmeister E.K. 2014. Corticosterone metabolite concentrations in greater sage-grouse are positively associated with the presence of cattle grazing. Rangel. Ecol. Manage. 67(3): 237–246.
Jimeno B., Hau M., and Verhulst S. 2018. Corticosterone levels reflect variation in metabolic rate, independent of ‘stress’. Sci. Rep. 8: 13020.
Johnson G.D. and Boyce M.S. 1990. Feeding trials with insects in the diet of sage grouse chicks. J. Wildl. Manage. 54(1): 89–91.
Kitaysky A.S., Wingfield J.C., and Piatt J.F. 1999. Dynamics of food availability, body condition and physiological stress response in breeding black-legged kittiwakes. Funct. Ecol. 13: 577–584.
Kitaysky A.S., Kitaiskaia E.V., Wingfield J.C., and Piatt J.F. 2001. Dietary restriction causes chronic elevation of corticosterone and enhances stress response in red-legged kittiwake chicks. J. Comp. Physiol. B, 171: 701–709.
Koren L., Nakagawa S., Burke T., Soma K.K., Wynne-Edwards K.E., and Geffen E. 2012. Non-breeding feather concentrations of testosterone, corticosterone and cortisol are associated with subsequent survival in wild house sparrows. Proc. R Soc. B Biol. Sci. 279: 1560–1566.
Kozlowski C.P., Clawitter H.L., Their T., Fischer M.T., Asa C.S., Macek M.S., et al. 2018. Patterns of faecal steroids associated with reproduction in two Cracidae species: the blue-throated piping guan (Pipile cumanensis cumanensis) and the horned guan (Oreophasis derbianus). J. Zoo Aqua. Res. 6: 85–90.
Krausman P.R. and Morrison M.L. 2016. Another plea for standard terminology. J. Wildl. Manage. 80(7): 1143–1144.
Labocha M.K. and Hayes J.P. 2012. Morphometric indices of body condition in birds: A review. J. Ornithol. 153: 1–22.
LANDFIRE. 2013. Existing vegetation type layer, LANDFIRE 1.1.0. U.S. Department of the Interior, Geological Survey. Available from https://landfire.gov/getdata.php [accessed 18 June 2019].
Landys-Ciannelli M.M., Ramenofsky M., Piersma T., Jukema J., Group C.R., and Wingfield J.C. 2002. Baseline and stress-induced plasma corticosterone during long-distance migration in the bar-tailed godwit, Limosa lapponica. Physiol. Biochem. Zool. 75: 101–110.
Lima S.L. and Dill L.M. 1990. Behavioral decisions made under the risk of predation: a review and prospectus. Can. J. Zool. 68(4): 619–640.
Lockyer Z.B., Coates P.S., Casazza M.L., Espinosa S., and Delehanty D.J. 2015. Nest-site selection and reproductive success of greater sage-grouse in a fire-affected habitat of Northwestern Nevada. J. Wildl. Manage. 79(5): 785–797.
Luna, T., Mousseaux, M.R., and Dumroese, R.K. 2018. Common native forbs of the Northern Great Basin important for greater sage-grouse. Gen. Tech. Rep. RMRS-GTR-387. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fort Collins, Colo.; U.S. Department of the Interior, Bureau of Land Management, Oregon–Washington Region, Portland, Ore. 76 pp.
Marquardt D.W. 1980. A critique of some ridge regression methods: Comment. J. Am. Stat. Assoc. 75(369): 87–91.
McEwen B. and Wingfield J.C. 2003. The concept of allostasis in biology and biomedicine. Horm. Behav. 43: 2–15.
McGrath, C.L., Woods, A.J., Omernik, J.M., Bryce, S.A., Edmondson, M., and Nesser, J.A. et al. 2002. Ecoregions of Idaho (color poster with map, descriptive text, summary tables, and photographs). U.S. Geological Survey, Reston, Va. Available from https://gaftp.epa.gov/Epadatacommons/ORD/Ecoregions/id/id_eco_lg.pdf.
Mesa-Cruz J.B., Brown J.L., and Kelly M.J. 2014. Effects of natural environmental conditions on faecal glucocorticoid metabolite concentrations in jaguars (Panthera onca) in Belize. Conserv. Physiol. 2(1): cou039.
Milenkaya O., Catlin D.H., Legge S., and Walters J.R. 2015. Body condition indices predict reproductive success but not survival in a sedentary, tropical bird. PLoS ONE, 10(8): e0136582.
Miller R.F., Svejcar T.J., and Rose J.A. 2000. Impacts of western juniper on plant community composition and structure. J. Range Manage. 53: 574–585.
Millspaugh J.J. and Washburn B.E. 2004. Use of fecal glucocorticoid metabolite measures in conservation biology research: considerations for application and interpretation. Gen. Comp. Endocrinol. 138: 189–199.
Möstl E., Rettenbacher S., and Palme R. 2005. Measurement of corticosterone metabolites in birds’ droppings: An analytical approach. Ann. N.Y. Acad. Sci. 1046: 17–34.
Natural Resource Conservation Service (NRCS). 2019. National Water and Climate Center. Available from https://www.nrcs.usda.gov/wps/portal/wcc/home/ [accessed 15 September 2019].
O’Donnell K. and delBarco-Trillo J. 2020. Changes in the home range sizes of terrestrial vertebrates in response to urban disturbance: a meta-analysis. J. Urban Ecol. 6(1): juaa014.
Pasinelli G. 2000. Oaks (Quercus sp.) and only oaks? Relations between habitat structure and home range size of the middle spotted woodpecker (Dendrocopos medius). Biol. Conserv. 93: 227–235.
Pratt A.C., Smith K.T., and Beck J.L. 2017. Environmental cues used by greater sage-grouse to initiate altitudinal migration. Auk, 134: 628–643.
Prochazka B.G., Coates P.S., Ricca M.A., Casazza M.L., Gustafson K.B., and Hull J. 2017. Encounters with pinyon-juniper influence riskier movements in greater sage-grouse across the great basin. Rangel. Ecol. Manage. 70: 39–49.
Rabon, J.C. 2020. Habitat selection and physiological condition of female greater sage-grouse in relation to western juniper. M.Sc. thesis, Department of Fish and Wildlife Sciences, University of Idaho, Moscow.
Ricca M.A., Coates P.S., Gustafson K.B., Brussee B.E., Chambers J.C., Espinosa S.P., et al. 2018. A conservation planning tool for Greater Sage-grouse using indices of species distribution, resilience, and resistance. Ecol. Appl. 28(4): 878–896.
Robert K.A., Lesku J.A., Partecke J., and Chambers B. 2015. Artificial light at night desynchronizes strictly seasonal reproduction in a wild mammal. Proc. R Soc. B Biol. Sci. 282: 20151745.
Romero L.M. and Reed J.M. 2005. Collecting baseline corticosterone samples in the field: Is under 3 min good enough? Comp. Biochem. Physiol. A Mol. Integr. Physiol. 140: 73–79.
Rottler C.M., Noseworthy C.E., Fowers B., and Beck J.L. 2015. Effects of conversion from sagebrush to non-native grasslands on sagebrush-associated species. Rangelands, 37(1): 1–6.
Saino N., Romano M., Ferrari R.P., Martinelli R., and Moller A.P. 2005. Stressed mothers lay eggs with high corticosterone levels which produce low-quality offspring. J. Exp. Zool. 303A: 998–1006.
Sandford C.P., Kohl M.T., Messmer T.A., Dahlgren D.K., Cook A., and Wing B.R. 2017. Greater sage-grouse resource selection drives reproductive fitness under a conifer removal strategy. Rangel. Ecol. Manag. 70: 59–67.
Santos J.P.V., Acevedo P., Carvalho J., Queirós J., Villamuelas M., Fonseca C., et al. 2018. The importance of intrinsic traits, environment and human activities in modulating stress levels in a wild ungulate. Ecol. Indic. 89: 706–715.
Scheiber I.B.R., de Jong M.E., Komdeur J., Pschernig E., Loonen M.J.J.E., Millesi E., and Weiß B.M. 2017. Diel pattern of corticosterone metabolites in Arctic barnacle goslings (Branta leucopsis) under continuous natural light. PLoS ONE, 12(8): e0182861.
Schroeder, M.A., Young, J.R., and Braun, C.E. 1999. Greater sage-grouse (Centrocercus urophasianus). In The birds of North America Online. No. 425. Edited by A. Poole. Cornell Laboratory of Ornithology, Ithaca, N.Y.
Schroeder M.A., Aldridge C.L., Apa A.D., Bohne J.R., Braun C.E., Bunnell S.D., et al. 2004. Distribution of sage-grouse in North America. Condor, 106(2): 363–376.
Severson J.P., Hagen C.A., Maestas J.D., Naugle D.E., Forbes J.T., and Reese K.P. 2017. Effects of conifer expansion on greater sage-grouse nesting habitat selection. J. Wildl. Manage. 81: 86–95.
Sheriff M.J., Krebs C.J., and Boonstra R. 2010. Assessing stress in animal populations: Do fecal and plasma glucocorticoids tell the same story? Gen. Comp. Endocrinol. 166: 614–619.
Shipley A.A., Sheriff M.J., Pauli J.N., and Zuckerberg B. 2019. Snow roosting reduces temperatureassociated stress in a wintering bird. Oecologia, 190: 309–321.
Smith K.T., Beck J.L., and Kirol C.P. 2018. Reproductive state leads to intraspecific habitat partitioning and survival differences in greater sage-grouse: Implications for conservation. Wildl. Res. 45: 119–131.
Sokol R. and Koziatek-Sadlowska S. 2020. Changes in the corticosterone level in tooting male black grouse (Tetrao tetrix) infected with Eimeria spp. Poult. Sci. 99: 1306–1310.
Tempel D.J. and Gutiérrez R.J. 2004. Factors related to fecal corticosterone levels in California spotted owls: Implications for assessing chronic stress. Conserv. Biol. 18(2): 538–547.
Thiel D., Jenni-Eiermann S., and Palme R. 2005. Measuring corticosterone metabolites in droppings of capercaillies (Tetrao urogallus). Ann. N.Y. Acad. Sci. 1046: 96–108.
USDA, Natural Resources Conservation Service (NRCS); USDA, Farm Service Agency (FSA); and USDA, Rural Development (RD). 2016a. Geospatial Data Gateway: Geographic Names, Populated Places. USDA, Natural Resources Conservation Service. Available from https://doi.org/10.15482/USDA.ADC/1241880 [accessed 7 October 2018].
USDA, Natural Resources Conservation Service (NRCS); USDA, Farm Service Agency (FSA); and USDA, Rural Development (RD). 2016b. Geospatial Data Gateway: TIGER Primary and Secondary Roads. USDA, Natural Resources Conservation Service. Available from https://doi.org/10.15482/USDA.ADC/1241880 [accessed 4 October 2018].
USDA, Natural Resources Conservation Service (NRCS); Farm Service Agency (FSA); and USDA, Rural Development (RD). 2016c. Geospatial Data Gateway: TIGER Streets. USDA, Natural Resources Conservation Service. Available from https://doi.org/10.15482/USDA.ADC/1241880 [accessed 4 October 2018].
U.S. Geological Survey (USGS). 2018. Greater Sage-grouse Project, Nevada — General Information and Protocols for Field Operations and Monitoring. 2s018 ed. Western Ecological Research Center, Dixon, Calif. 115 pp.
Wada H. and Breuner C.W. 2008. Transient elevation of corticosterone alters begging behavior and growth of white-crowned sparrow nestlings. J. Exp. Biol. 211: 1696–1703.
Wakkinen W.L., Reese K.P., Connelly J.W., and Fischer R.A. 1992. An improved spotlighting technique for capturing sage grouse. Wildl. Soc. Bull. 20: 425–426.
Washburn B.E. and Millspaugh J.J. 2002. Effects of simulated environmental conditions on glucocorticoid metabolite measurements in white-tailed deer feces. Gen. Comp. Endocrinol. 127: 217–222.
Wasser S.K. and Hunt K.E. 2005. Noninvasive measures of reproductive function and disturbance in the barred owl, great horned owl, and northern spotted owl. Ann. N.Y. Acad. Sci. 1046: 1–29.
Wasser S.K., Hunt K.E., Brown J.L., Cooper K., Crockett C.M., Bechert U., et al. 2000. A generalized fecal glucocorticoid assay for use in a diverse array of nondomestic mammalian and avian species. Gen. Comp. Endocrinol. 120: 260–275.
Wasser S.K., Azkarate J.C., Booth R.K., Hayward L., Hunt K., Ayres K., et al. 2010. Non-invasive measurement of thyroid hormone in feces of a diverse array of avian and mammalian species. Gen. Comp. Endocrinol. 168(1): 1–7.
Webb S.L., Olson C.V., Dzialak M.R., Harju S.M., Winstead J.B., and Lockman D. 2012. Landscape features and weather influence nest survival of a ground-nesting bird of conservation concern, the greater sage-grouse, in human altered environments. Ecol. Processes, 1: 4.
Western Association of Fish and Wildlife Agencies (WAFWA). 2015. Greater sage-grouse population trends: An analysis of lek count databases 1965–2015. Western Association of Fish and Wildlife Agencies, Cheyenne, Wyo.
Wikelski M. and Cooke S.J. 2006. Conservation physiology. Trends Ecol. Evol. 21: 38–46.
Wills, H.D. 2013. The relationship between wind turbines and corticosterone and testosterone levels in lekking male greater prairie chickens in Nebraska. M.Sc. thesis, Department of Biology, University of Nebraska, Omaha.
Xian G., Homer C., Rigge M., Shi H., and Meyer D. 2015. Characterization of shrubland ecosystem components as continuous fields in the northwest United States. Remote Sens. Environ. 168: 286–300.
Yang L., Jin S., Danielson P., Homer C., Gass L., Case A., et al. 2018. A new generation of the United States National Land Cover Database — Requirements, research priorities, design, and implementation strategies. ISPRS J. Photogramm. Remote Sens. 146: 108–123.
Zimmerman G.S., Millspaugh J.J., Link W.A., Woods R.J., and Gutiérrez R.J. 2013. A flexible Bayesian hierarchical approach for analyzing spatial and temporal variation in the fecal corticosterone levels in birds when there is imperfect knowledge of individual identity. Gen. Comp. Endocrinol. 194: 64–70.
Zuur, A.F., Ieno, E.N., Walker, N.J., Saveliev, A.A., and Smith, G.M. 2009. Mixed effects models and extensions in ecology with R. Springer-Verlag, New York.

Supplementary Material

Supplementary data (cjz-2020-0258suppla.docx)

Information & Authors

Information

Published In

cover image Canadian Journal of Zoology
Canadian Journal of Zoology
Volume 99Number 9September 2021
Pages: 812 - 822

History

Received: 23 October 2020
Accepted: 31 March 2021
Accepted manuscript online: 12 July 2021
Version of record online: 12 July 2021

Permissions

Request permissions for this article.

Key Words

  1. Greater Sage-Grouse
  2. Centrocercus urophasianus
  3. western juniper
  4. Juniperus occidentalis
  5. conifer expansion
  6. invasive grasses
  7. fecal corticosterone metabolites

Mots-clés

  1. tétras des armoises
  2. Centrocercus urophasianus
  3. genévrier des Rocheuses
  4. Juniperus occidentalis
  5. expansion des conifères
  6. graminées envahissantes
  7. métabolites fécaux de la corticostérone

Authors

Affiliations

University of Idaho, 875 Perimeter Drive MS 1136, Moscow, ID 83844-1136, USA.
C.M.V. Nuñez
University of Memphis, 3774 Walker Avenue, Memphis, TN 38152, USA.
P.S. Coates
Western Ecological Research Center, U.S. Geological Survey, 800 Business Park Drive, Dixon, CA 95620, USA.
M.A. Ricca
Forest and Rangeland Ecosystem Science Center, U.S. Geological Survey, 777 Northwest Ninth Street #400, Corvallis, OR 97330, USA.
T.N. Johnson
University of Idaho, 875 Perimeter Drive MS 1136, Moscow, ID 83844-1136, USA.

Notes

© 2021 The Author(s). Permission for reuse (free in most cases) can be obtained from copyright.com.

Metrics & Citations

Metrics

Other Metrics

Citations

Cite As

Export Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

1. Landscape configuration impacts the area of spring space use and survival of female sage-grouse
2. Relationships between Spatial Biology and Physiological Ecology in the Gopher Tortoise, Gopherus polyphemus
3. Biological validation of faecal corticosterone metabolites as a non-invasive stress assessment in translocated California valley quail ( Callipepla californica )
4. Biological validation of fecal corticosterone metabolites as a non-invasive stress assessment in translocated California valley quail ( Callipepla californica )
5. Ecological effects of pinyon-juniper removal in the Western United States—A synthesis of scientific research, January 2014–March 2021
6. Impact of Indigestible Materials on the Efficiency of Fecal Corticosterone Immunoassay Testing in Pituophis Species

View Options

Login options

Check if you access through your login credentials or your institution to get full access on this article.

Subscribe

Click on the button below to subscribe to Canadian Journal of Zoology

Purchase options

Purchase this article to get full access to it.

Restore your content access

Enter your email address to restore your content access:

Note: This functionality works only for purchases done as a guest. If you already have an account, log in to access the content to which you are entitled.

View options

PDF

View PDF

Full Text

View Full Text

Media

Tables

Media

Share Options

Share

Share the article link

Share on social media