Partitioning resources through the seasons: abundance and phenology of carrion beetles (Silphidae) in southeastern Ontario, Canada

Publication: Canadian Journal of Zoology
9 August 2021

Abstract

The coexistence of ecologically similar species is thought to require resource partitioning to minimize competition. Phenological, seasonal differences in activity may provide an important axis for resource partitioning. Here, we test for evidence of seasonal differences in activity within a diverse guild of carrion beetles (Silphidae) in a habitat preserve on the Frontenac Arch, southeastern Ontario, Canada, using a large-scale survey during their active seasons (April to October). We then used generalized additive models to test for differences in seasonal abundance among eight co-occurring carrion beetle species, including five species of burying beetles (Nicrophorinae: Nicrophorus Fabricius, 1775) and three species from the Silphinae subfamily. Consistent with previous work, all species showed seasonal variation in abundance, with peak abundance of most species occurring between June and August. All but one species (Nicrophorus sayi Laporte, 1840) showed positive relationships between abundance and temperature. We find evidence consistent with seasonal partitioning of resources among Nicrophorus habitat generalists that could potentially reduce competition for limited carrion resources. In contrast, we find little evidence for seasonal differences in abundance among Nicrophorus habitat specialists, which instead may partition resources spatially. Overall, our results provide evidence consistent with an important role for seasonal resource partitioning among carrion beetle species that show higher levels of spatial (habitat) overlap within a temperate beetle guild.

Résumé

Pour minimiser la concurrence, les espèces semblables d’un point de vue écologique pourraient devoir faire preuve de partage préférentiel des ressources. Des différences saisonnières phénologiques de l’activité pourraient constituer un important axe de partage des ressources. Nous tentons de déterminer s’il y a des différences saisonnières d’activité au sein d’une guilde variée de coléoptères nécrophages (silphidés) dans une réserve d’habitat dans l’arche de Frontenac (sud-est de l’Ontario, Canada) en utilisant un levé à grande échelle durant leurs saisons d’activité (d’avril à octobre). Nous utilisons ensuite des modèles additifs généralisés pour déceler la présence de variations d’abondance saisonnières entre huit espèces de coléoptères nécrophages cooccurrentes, dont cinq espèces de scarabées terrassiers (nicrophorinés : Nicrophorus Fabricius, 1775) et trois espèces de la sous-famille des silphinés. À l’instar de résultats de travaux antérieurs, toutes les espèces présentent des variations saisonnières d’abondance, l’abondance maximum étant observée entre juin et août pour la plupart des espèces. Toutes les espèces sauf une (Nicrophorus sayi Laporte, 1840) présentent des relations positives entre l’abondance et la température. Nous relevons des indices d’un partage saisonnier des ressources entre différents Nicrophorus généralistes en matière d’habitat qui pourrait potentiellement réduire la concurrence pour des ressources de cadavres limitées. En revanche, nous relevons peu d’indices de différences saisonnières d’abondance chez les Nicrophorus spécialistes en matière d’habitat, qui pourraient plutôt avoir recours au partage spatial des ressources. Globalement, nos résultats soutiennent l’interprétation d’un rôle important du partage saisonnier des ressources entre différentes espèces de coléoptères nécrophages caractérisées par un haut degré de chevauchement spatial (d’habitats) au sein d’une guilde de coléoptères de climat tempéré. [Traduit par la Rédaction]

Get full access to this article

View all available purchase options and get full access to this article.

References

Anderson, R.S. 1981. The biology and distribution of the Silphidae and Agyrtidae of Canada and Alaska. M.Sc. thesis, Carleton University, Ottawa, Ont.
Anderson R.S. 1982. Resource partitioning in the carrion beetle (Coleoptera: Silphidae) fauna of southern Ontario: ecological and evolutionary considerations. Can. J. Zool. 60(6): 1314–1325.
Anderson, R.S., and Peck, S.B. 1985. The carrion beetles of Canada and Alaska. In The Insects and Arachnids of Canada (Coleoptera: Silphidae and Agyrtidae). Agriculture Canada, Ottawa, Ont.
Bartlett J. 1988. Male mating success and paternal care in Nicrophorus vespilloides (Coleopera: Silphidae). Behav. Ecol. Sociobiol. 23(5): 297–303.
Beninger C.W. 1994. Phenology, reproductive biology, and habitat associations of Nicrophorus fab (Coleoptera, Silphidae) of the Mer-Bleue bog area (Ottawa, Canada). Mem. Entomol. Soc. Can. 169: 135–143.
Beninger C.W. and Peck S.B. 1992. Temporal and spatial patterns of resource use among Nicrophorus in a Sphagnum bog and adjacent forest near Ottawa. Can. Entomol. 124: 79–86.
Benowitz K.M., Amukamara A.U., Mckinney E.C., and Moore A.J. 2019. Development and the effects of extended parenting in the cold-breeding burying beetle Nicrophorus sayi. Ecol. Entomol. 44(1): 11–16.
Bjornstad, O.N., and Cai, J. 2018. ncf: Spatial covariance functions. R package version 1.2-6. Available from https://CRAN.R-project.org/package=ncf.
Blouin-Demers G. and Weatherhead P.J. 2000. A novel association between a beetle and a snake: parasitism of Elaphe obsoleta by Nicrophorus pustulatus. Écoscience, 7: 395–397.
Brown M.G.C. and Beresford D.V. 2016. Unusually high trap catches of a snake egg parasitoid, Nicrophorus pustulatus (Coleoptera: Silphidae) in the Frontenac Axis population of gray ratsnake Pantherophis spiloides. Can. Wildl. Biol. Manage. 5(2): 25–31.
Burke, K.W. 2017. Coexistence through morphological divergence in burying beetles (genus: Nicrophorus). B.Sc. honours thesis, Queen’s University, Kingston, Ont.
Burke K.W., Wettlaufer J.D., Beresford D.V., and Martin P.R. 2020. Habitat use of co-occurring burying beetles (genus Nicrophorus) in southeastern Ontario, Canada. Can. J. Zool. 98(9): 591–602.
Cadman, M.D., Sutherland, D.A., Beck, G.G., Lepage, D., and Couturier, A.R. 2007. Atlas of the Breeding Birds of Ontario, 2001–2005. Bird Studies Canada, Environment Canada, Ontario Field Ornithologists, Ontario Ministry of Natural Resources, and Ontario Nature, Toronto, Ont.
Collard A.E., Wettlaufer J.D., Burke K.W., Beresford D.V., and Martin P.R. 2021. Body size variation in a guild of carrion beetles. Can. J. Zool. 99(2): 117–129.
Dyer N.W. and Price D.L. 2013. Notes on the diversity and foraging height of carrion beetles (Coleoptera: Silphidae) of the Nassawango Creek Preserve, Maryland, USA. Coleopt. Bull. 67(3): 397–400.
Easton, C. 1979. The ecology of burying beetles. Ph.D. thesis, Glasgow University, Glasgow, Scotland.
Environment Canada. 2019. National climate data and information archive. Available from http://climate.weather.gc.ca/historical_data/search_historic_data_e.html.
Fargione J. and Tilman D. 2005. Niche differences in phenology and rooting depth promote coexistence with a dominant C4 bunchgrass. Oecologia, 143(4): 598–606.
Hardin G. 1960. The competitive exclusion principle. Science, 131(3409): 1292–1297.
Harper J.L., Clatworthy J.N., McNaughton I.H., and Sagar G.R. 1961. The evolution and ecology of closely related species living in the same area. Evolution, 15(2): 209–227.
Heard G.W., Canessa S., and Parris K.M. 2015. Interspecific variation in the phenology of advertisement calling in a temperate Australian frog community. Ecol. Evol. 5(18): 3927–3938.
Jones J., DeBruyn R.D., Barg J.J., and Robertson R.J. 2001. Assessing the effects of natural disturbance on a Neotropical migrant songbird. Ecology, 82(9): 2628–2635.
Katakura H. and Fukuda H. 1975. Faunal makeup of ground and carrion beetles in Kamiotoineppu, Hokkaido University Nakagawa Experiment Forest, northern Japan, with notes on some related problems. Res. Bull. Coll. Exp. For. Hokkaido Univ. 32(1): 75–92. Available from http://hdl.handle.net/2115/20952.
Katakura H. and Ueno R. 1985. A preliminary study on the faunal make-up and spatio-temporal distribution of carrion beetles (Coleoptera: Silphidae) on the Ishhikari coast, northern Japan. Jpn. J. Ecol. 35(4): 461–468.
Keast, A. 1990. Biogeography and ecology of forest bird communities. SPB Academic Publishing, The Hague, the Netherlands.
Keller M.L., Howard D.R., and Hall C.L. 2019. Spatiotemporal niche partitioning in a specious silphid community (Coleoptera: Silphidae, Nicrophorus). Sci. Nat. 106(11–12): 57.
Keller W.L. and Heske E.J. 2001. An observation of parasitism of black rat snake (Elaphe obsoleta) eggs by a beetle (Nicrophorus pustulatus) in Illinois. Trans. Ill. State Acad. Sci. 94: 167–169.
LeGros D.L. and Beresford D.V. 2010. Aerial foraging and sexual dimorphism in burying beetles (Silphidae: Coleoptera) in a central Ontario forest. J. Entomol. Soc. Ont. 141: 3–10.
LeGros D.L., Pratt S., and Beresford D.V. 2010. Burying beetles as parasitoids of northern ringneck snakes. Reptiles and Amphibians, 17: 234–235.
Lindroth C. 1971. On the occurrence of a continental element in the ground beetle fauna of eastern Ontario (Coleoptera: Carabidae). Can. Entomol. 103(10): 1455–1462.
Lingafelter S.W. 1995. Diversity, habitat preferences, and seasonality of Kansas carrion beetles (Coleoptera: Silphidae). J. Kans. Entoml. Soc. 68(2): 214–223.
Lynch J.F., Balinsky E.C., and Vail S.G. 1980. Foraging patterns in three sympatric forest ant species, Prenolepis imparis, Paratrechina melanderi, and Aphaenogaster rudis (Hymenoptera: Formicidae). Ecol. Entomol. 5(4): 353–371.
Majka C.G. 2011. The Silphidae (Coleoptera) of the Maritime Provinces of Canada. J. Acad. Entomol. Soc. 7: 83–101.
Martin, P.R. 1994. Effects of forest management practices and forest-cutting history on the songbird communities of mature hardwood forest stands, Lake Opinicon, Leeds/Frontenac Cos., Ontario. Ontario Ministry of Natural Resources, Brockville, Ont.
Martín-Vega D. and Baz A. 2012. Spatiotemporal distribution of necrophagous beetles (Coleoptera: Dermestidae, Silphidae) assemblages in natural habitats of central Spain. Ann. Entom. Soc. Am. 105(1): 44–53.
Müller J.K. and Eggert A.-K. 1987. Effects of carrion-independent pheromone emission by male burying beetles (Silphidae: Necrophorus). Ethology, 76(4): 297–304.
Nagano M. and Suzuki S. 2003. Phenology and habitat use among Nicrophorine beetles of the genus Nicrophorus and Ptomascopus (Coleoptera: Silphidae.). Edaphologia, 73: 1–9.
Paterson J.E. and Blouin-Demers G. 2017. Do ectotherms partition thermal resources? We still do not know. Oecologia, 183(2): 337–345.
Peck, G.K., and James, R.D. 1987. Breeding birds of Ontario: nidiology and distribution. Royal Ontario Museum, Life Science Miscellaneous Publication, Toronto, Ont.
Price T.D., Hooper D.M., Buchanan C.D., Johansson U.S., Tietze D.T., Alström P., et al. 2014. Niche filling slows the diversification of Himalayan songbirds. Nature, 509(7499): 222–225.
Pukowski E. 1933. Ökologische untersuchungen an Necrophorus f. Z Morphol. Okol. Tiere, 27: 518–586.
R Core Team. 2018. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available from https://www.r-project.org.
Ricklefs, R.E. 1969. An analysis of nesting mortality in birds. Smithsonian Contributions to Zoology Number 9, Smithsonian Institution Press, Washington, D.C.
Robertson I.C. 1992. Relative abundance of Nicrophorus pustulatus (Coleoptera: Silphidae) in a burying beetle community, with notes on its reproductive behavior. Psyche, 99: 189–198.
Rose N.L., Yang H., Turner S.D., and Simpson G.L. 2012. An assessment of the mechanisms for the transfer of lead and mercury from atmospherically contaminated organic soils to lake sediments with particular reference to Scotland, UK. Geochim. Cosmochim. Acta, 82: 111–135.
Rozen D.E., Engelmoer D.J.P., and Smiseth P.T. 2008. Antimicrobial strategies in burying beetles breeding on carrion. Proc. Natl. Acad. Sci. U.S.A. 105(46): 17890–17895.
Schoener T.W. 1974. Resource partitioning in ecological communities. Science, 185(4145): 27–39. 39.
Schoener T.W. 2011. The newest synthesis: understanding the interplay of evolutionary and ecological dynamics. Science, 331(6016): 426–429.
Schrempf S.D., Burke K.W., Wettlaufer J.D., and Martin P.R. 2021. Behavioural dominance interactions between Nicrophorus orbicollis and N. tomentosus burying beetles (Coleoptera: Silphidae). PeerJ, 9: e10797.
Scott M.P. 1994. Competition with flies promotes communal breeding in the burying beetle, Nicrophorus tomentosus. Behav. Ecol. Sociobiol. 34(5): 36–373.
Scott M.P. 1998. The ecology and behaviour of burying beetles. Annu. Rev. Entomol. 43(1): 595–618.
Scott M.P. and Traniello J.F.A. 1990. Behavioural and ecological correlates of male and female parental care and reproductive success in burying beetles (Nicrophorus spp). Anim. Behav. 39: 274–283.
Scriven J.J., Whitehorn P.R., Goulson D., and Tinsley M.C. 2016. Niche partitioning in a sympatric cryptic species complex. Ecol. Evol. 6(5): 1328–1339.
Shubeck P.P. 1971. Diel periodicities of certain carrion beetles. Coleopt. Bull. 25: 41–46.
Shubeck P.P., Downie N.M., Wenzel R.L., and Peck S.B. 1981. Species composition and seasonal abundance of carrion beetles in an oak–beech forest in the Great Swamp National Wildlife Refuge (NJ). Entomol. News, 92: 7–16.
Sikes D.S., Trumbo S.T., and Peck S.B. 2016. Cryptic diversity in the New World burying beetle fauna: Nicrophorus hebes Kirby; new status as a resurrected name (Coleoptera: Silphidae: Nicrophorinae). Arthropod Syst. Phylog. 74(3): 299–309.
Simpson, G.L., 2017. Comparing smooths in factor-smooth interactions I: by-variable smooths. Available from https://www.fromthebottomoftheheap.net/2017/10/10/difference-splines-i/.
Simpson G.L. 2018. Modelling palaeoecological time series using generalised additive models. Front. Ecol. Evol. 6: 149.
Smith G., Trumbo S.T., Sikes D.S., Scott M.P., and Smith R.L. 2007. Host shift by the burying beetle, Nicrophorus pustulatus, a parasitoid of snake eggs. J. Evol. Biol. 20: 2389–2399.
Toft C.A. 1985. Resource partitioning in amphibians and reptiles. Copeia, 1985(1): 1–21.
Trumbo S.T. 1990a. Interference competition among burying beetles. Ecol. Entomol. 15(3): 347–355.
Trumbo S.T. 1990b. Reproductive success, phenology, and biogeography of burying beetles (Silphidae, Nicrophorus). Am. Midl. Nat. 124(1): 1–11.
Trumbo S.T. and Bloch P.L. 2000. Habitat fragmentation and burying beetle abundance and success. J. Insect Conserv. 4: 245–252.
Trumbo S.T. and Bloch P.L. 2002. Competition between Nicrophorus orbicollis and N. defodiens: resource location efficiency and temporal partitioning. Northeast. Nat. 9(1): 13–26.
Ulyshen M.D., Hanula J.L., and Horn S. 2007. Burying beetles (Coleoptera: Silphidae) in the forest canopy: the unusual case of Nicrophorus pustulatus Herschel. Coleopt. Bull. 61(1): 121–123.
Urbański A. and Baraniak E. 2015. Differences in early seasonal activity of three burying beetles species (Coleoptera: Silphidae: Nicrophorus F.) in Poland. Coleopt. Bull. 69(2): 283–292.
van Rij, J., Wieling, M., Baayen, R., and van Rijn, H. 2017. itsadug: Interpreting time series and autocorrelated data using GAMMs. R package version 2.3. Available from https://CRAN.R-project.org/package=itsadug.
Violle C., Nemergut D.R., Pu Z., and Jiang L. 2011. Phylogenetic limiting similarity and competitive exclusion. Ecol. Lett. 14(8): 782–787.
Walter G.H. 1991. What is resource partitioning? J. Theor. Biol. 150(2): 137–143.
Webb C.O., Ackerly D.D., McPeek M.A., and Donoghue M.J. 2002. Phylogenies and community ecology. Annu. Rev. Ecol. Syst. 33(1): 475–505.
Werner S.M. and Raffa K.F. 2003. Seasonal activity of adult, ground-occurring beetles (Coleoptera) in forests of northeastern Wisconsin and the upper peninsula of Michigan. Am. Midl. Nat. 149(1): 121–133.
Wettlaufer J.W., Burke K.W., Schizkoske A., Beresford D.V., and Martin P.R. 2018. Ecological divergence of burying beetles into the forest canopy. PeerJ, 6: e5829.
Wilhelm S.I., Larson D.J., and Storey A.E. 2001. Habitat preference of two burying beetles (Coleoptera: Silphidae: Nicrophorus) living among seabirds. Northeast. Nat. 8(4): 435–442.
Wilson D.S., Knollenberg W.G., and Fudge J. 1984. Species packing and temperature dependent competition among burying beetles (Silphidae, Nicrophorus). Ecol. Entomol. 9(2): 205–216.
Wood, S.N. 2006. mgcv: mixed GAM computation vehicle with automatic smoothness estimation. R package version 1.8-28. Available from https://CRAN.R-project.org/package=mgcv.
Wood S.N. 2011. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J. R. Stat. Soc. B Stat. Methodol. 73(1): 3–36.
Wood, S.N. 2017. Generalized additive models: an introduction with R. 2nd ed. CRC Press, Boca Raton, Fla.

Supplementary Material

Supplementary data (cjz-2021-0081suppla.pdf)

Information & Authors

Information

Published In

cover image Canadian Journal of Zoology
Canadian Journal of Zoology
Volume 99Number 11November 2021
Pages: 961 - 973

History

Received: 19 April 2021
Accepted: 8 June 2021
Published online: 9 August 2021

Permissions

Request permissions for this article.

Key Words

  1. Silphidae
  2. burying beetles
  3. Nicrophorus
  4. phenology
  5. seasonal partitioning
  6. temporal partitioning
  7. resource partitioning
  8. species coexistence
  9. niche partitioning
  10. community ecology

Mots-clés

  1. silphidés
  2. scarabées fouisseurs
  3. Nicrophorus
  4. phénologie
  5. partage saisonnier
  6. partage temporel
  7. partage des ressources
  8. coexistence d’espèces
  9. partage de niches
  10. écologie des communautés

Authors

Affiliations

J.D. Wettlaufer 12jw73@queensu.ca
Department of Biology, Queen’s University, 116 Barrie Street, Kingston, ON K7L 3N6, Canada.
K.W. Burke
Department of Biology, Queen’s University, 116 Barrie Street, Kingston, ON K7L 3N6, Canada.
D.V. Beresford
Department of Biology, Trent University, 2140 East Bank Drive, Peterborough, ON K9L 1Z8, Canada.
P.R. Martin
Department of Biology, Queen’s University, 116 Barrie Street, Kingston, ON K7L 3N6, Canada.

Notes

© 2021 The Author(s). Permission for reuse (free in most cases) can be obtained from copyright.com.

Funding Information

Funding for this work was provided by the Natural Sciences and Engineering Research Council of Canada to P.R.M. (NSERC Discovery grants 355519-2013 and 04452-2018).

Metrics & Citations

Metrics

Other Metrics

Citations

Cite As

Export Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

1. A test of the competitive ability–cold tolerance trade‐off hypothesis in seasonally breeding beetles
2. Effects of dispersed and aggregated retention-cuttings and differently sized clear-cuttings in conifer plantations on necrophagous silphid and dung beetle assemblages

View Options

Get Access

Login options

Check if you access through your login credentials or your institution to get full access on this article.

Subscribe

Click on the button below to subscribe to Canadian Journal of Zoology

Purchase options

Purchase this article to get full access to it.

Restore your content access

Enter your email address to restore your content access:

Note: This functionality works only for purchases done as a guest. If you already have an account, log in to access the content to which you are entitled.

View options

PDF

View PDF

Full Text

View Full Text

Media

Media

Other

Tables

Share Options

Share

Share the article link

Share with email

Email a colleague

Share on social media