Review of resource utilization of Fe-rich sludges: purification, upcycling, and application in wastewater treatment

Publication: Environmental Reviews
19 July 2022

Abstract

This paper discusses the resource utilization of Fe-rich sludges generated as waste products from water treatment, hydrometallurgy, surface finishing, and dye chemical industries. Apart from the conventional landfill disposal of such sludges, the work focuses on sludge purification for new commercial products, including iron red/black dyes, an iron concentrate powder, a polyferric flocculant, a catalyst, and a magnetic adsorbent. Among such purifications, a new strategy was developed to recycle Fe-rich sludges for a new Fe/S-bearing flocculant. Given that Fe-rich sludges may contain rare and/or heavy metals, the purification of sludges as high-purity hematite nanoparticles and other valuable products is detailed as a new insight. Accordingly, the mechanisms for the phase transformation of Fe-bearing minerals and the purification of valuable Fe oxides are deeply considered. The work summarizes the pilot- and/or field-scale application for recycling of Fe-rich sludge and proposes the development of a new Fe/S flocculant and a high-purity hematite product.

Résumé

Cet article traite de l’utilisation à titre de ressource des boues riches en Fe générées comme déchets par le traitement de l’eau, l’hydrométallurgie, la finition de surface et les industries chimiques de teinture. Hormis l’élimination conventionnelle de ces boues par la mise en décharge, le travail s’est concentré sur la purification des boues vers la production de nouveaux produits commerciaux, notamment de colorant rouge/noir de fer, de poudre concentrée de fer, de floculant polyferrique, de catalyseur et d’adsorbant magnétique. Parmi ces processus de purification, une nouvelle stratégie a été développée pour recycler les boues riches en Fe comme nouveau floculant contenant du Fe/S. Puisque les boues riches en Fe peuvent contenir des métaux rares ou lourds, la purification des boues sous forme de nanoparticules d’hématite de haute pureté et d’autres produits d’intérêt a été détaillée comme une nouvelle idée. En conséquence, les mécanismes de la transformation de phase des minéraux contenant du Fe et la purification des oxydes de Fe intéressants ont été examinés en profondeur. Ce travail résume l’application à l’échelle pilote ou sur le terrain en vue du recyclage des boues riches en Fe et propose le développement d’un nouveau floculant Fe/S et d’un nouveau produit d’hématite de haute pureté. [Traduit par la Rédaction]

Get full access to this article

View all available purchase options and get full access to this article.

References

Adhi T.P., Raksajati A., Nugroho A.A., Sitanggang P.Y. 2020. FeCl3 coagulant production from waste pickle liquor using electrolysis. IOP Conf. Ser.: Mater. Sci. Eng. 823: 012058.
Ahmad T., Ahmad K., Alam M. 2016. Characterization of water treatment plant's sludge and its safe disposal options. Procedia Environ. Sci. 35, 950–955.
Aragaw T.A. 2020. Utilizations of electro-coagulated sludge from wastewater treatment plant data as an adsorbent for direct red 28 dye removal. Data Brief, 28: 104848.
Asavapisit S., Chotklang D. 2004. Solidification of electroplating sludge using alkali-activated pulverized fuel ash as cementitious binder. Cement Concrete Res. 34(2): 349–353.
Asavapisit S., Naksrichum S., Harnwajanawong N. 2005. Strength, leachability and microstructure characteristics of cement-based solidified plating sludge. Cement Concrete Res. 35(6): 1042–1049.
Bai R.B., Sutanto M. 2002. The practice and challenges of solid waste management in Singapore. Waste Manage. 22(5): 557–567.
Bal Krishna K.C., Aryal A., Jansen T. 2016. Comparative study of ground water treatment plants sludges to remove phosphorous from wastewater. J. Environ. Manage. 180: 17–23.
Bhatia D., Mccabe W.R., Harold P.M., Balakotaiah V. 2009. Experimental and kinetic study of NO oxidation on model Pt catalysts. J. Catal. 266(1): 106–119.
Bian R., Su T., Chen Y., Qu Z., Huo Y. 2020. Recycling of high-purity strontianite and hematite from strontium-bearing sludge. ACS Omega, 5(23): 14078–14085.
Bolobajev J., Kattel E., Viisimaa M., Goi A., Trapido M., Tenno T., Dulova N. 2014. Reuse of ferric sludge as an iron source for the Fenton-based process in wastewater treatment. Chem. Eng. J. 255: 8–13.
Brunori C., Cremisini C., Massanisso P., Pinto V., Torricelli L. 2005. Reuse of a treated red mud bauxite waste: studies on environmental compatibility. J. Hazard. Mater. 117(1): 55–63.
Cao G.M., Sheng M., Niu W.F., Fei Y.L., Li D. 2009. Regeneration and reuse of iron catalyst for Fenton-like reactions. J. Hazard. Mater., 172(2-3): 1446–1449.
Cao Z.B., Zhang J., Zhou J.Z., Ruan X.X., Chen D., Liu J.Y., 2017. Electroplating sludge derived zinc-ferrite catalyst for the efficient photo-Fenton degradation of dye. J. Environ. Manage. 193: 146–153.
Chang G., Pan X.L. 2020. Don't let industrial solid waste pollution threaten people's health [online]. Available from https://www.rmzxb.com.cn/c/2020-12-28/2747664.shtml [accessed 28 December 2020].
Chen D., Hou J., Yao L.H., Jin H.M., Qian G.R., Xu Z.P. 2010. Ferrite materials prepared from two industrial wastes: electroplating sludge and spent pickle liquor. Sep. Purif. Technol. 75(2): 210–217.
Chen H.X., Yuan H.H., Mao L.Q., Hashmi M.Z., Xu F.N., Tang X.J. 2020. Stabilization/solidification of chromium-bearing electroplating sludge with alkali-activated slag binders. Chemosphere, 240: 124885.
Chen M., Zhou J.Z., Zhang J., Zhang J., Chen Z., Ding J., 2017. Ferrite catalysts derived from electroplating sludge for high-calorie synthetic natural gas production. Appl. Catal., A, 534: 94–100.
Chen S.C., Zhu Q., Su Y.Y., Xing Z.P. 2018a. Preparation and performance of Fe(II)-akaganeite(β-FeOOH) modified red mud granule filter material. Res. Chem. Intermediat. 44(12): 7583–7593.
Chen Y., Wang Z.H., Liang D.X., Liu Y.W., Yu H.B., Zhu S.Y., Zhang L.L. 2021. Conversion of Fe-rich sludge to KFeS2 cluster: spontaneous hydrolysis of KFeS2 for the effective adsorption of doxycycline. Arab. J. Chem. 14(6): 103173.
Chen Z., Li J.S., Zhan B.J., Sharma U., Poon C.S. 2018b. Compressive strength and microstructural properties of dry-mixed geopolymer pastes synthesized from GGBS and sewage sludge ash. Constr. Build. Mater. 182: 597–607.
Chen Z.G., Wang X.J., Ge Q.L., Guo G.C. 2015. Iron oxide red wastewater treatment and recycling of iron-containing sludge. J. Clean. Prod. 87: 558–566.
Chen Z.L., Pu Y., Huang R.G., Wan G.J. 1996. Seasonal release of Fe and Mn at the sediment-water interface in Aha Lake. Chinese Sci. Bull. 41(16): 1359–1363.
Chiang K.Y., Lin Y.X., Lu C.H., Chien K.L., Lin M.H., Wu C.C., 2013. Gasification of rice straw in an updraft gasifier using water purification sludge containing Fe/Mn as a catalyst. Int. J. Hydrogen Energy, 38(28): 12318–12324.
Chittoo B.S., Sutherland C. 2014. Adsorption of phosphorus using water treatment sludge. J. Appl. Sci. 14(24): 3455–3463.
Chou I.C., Kuo Y.M., Lin C., Wang J.W., Wang C.T., Chang-Chien G.P. 2012. Electroplating sludge metal recovering with vitrification using mineral powder additive. Resour. Conserv. Recycl. 58: 45–49.
Costa S.G., Althoff A.C., Schneider T.J., Peralta-Zamora P. 2019. Advanced oxidation processes to the remediation of liquid residue from the thermal treatment of oily sludge. J. Brazil. Chem. Soc. 30(7): 1515–1523.
Da Silveira Salla J., Da Boit Martinello K., Dotto G.L., García-Díaz E., Javed H., Alvarez P.J., Foletto E.L. 2020. Synthesis of citrate–modified CuFeS2 catalyst with significant effect on the photo-Fenton degradation efficiency of bisphenol a under visible light and near-neutral pH. Colloid. Surface. A, 595: 124679.
Dai Z.Q., Wu Y.Q., Hu L.C., Zhang W.Y., Mao L.Q. 2019. Evaluating physical-mechanical properties and long periods environmental risk of fired clay bricks incorporated with electroplating sludge. Constr. Build. Mater. 227: 116716.
Daniele B., Rossella B., Roberto T., Marco R., Rodolfo V. 2000. A novel iron-based catalyst for the biphasic oxidation of benzene to phenol with hydrogen peroxide. Angew. Chem. Int. Ed. 39(23): 4491–4493.
Davis R.D., Hall J.E. 1997. Production, treatment and disposal of wastewater sludge in Europe from a UK perspective. Eur. Water Pollut. Contr. 2(7): 9–17.
Dong W.Q., Liang K., Qin Y.Y., Ma H.J., Zhao X., Zhang L.L., 2019. Hydrothermal conversion of red mud into magnetic adsorbent for effective adsorption of Zn(II) in water. Appl. Sci. 9(8): 1519.
Edwards M., Courtney B., Heppler P.S., Hernandez M. 1997. Beneficial discharge of iron coagulation sludge to sewers. J. Environ. Eng. 123(10): 1027–1032.
Fajerwerg K., Debellefontaine H. 1996. Wet oxidation of phenol by hydrogen peroxide using heterogeneous catalysis Fe-ZSM-5: a promising catalyst. Appl. Catal., B, 10(4): L229–L235.
Fang S., Liu Z.Q., Yu C., Huo M.X., Bian D.J., Xia Y., 2015. Synthesis of magnetic materials by solvothermal method with iron-mud and adsorption of methylene blue in aqueous solution. Chin. J. Nonferrous Met. 25(4): 1109–1115.
Gamaralalage D., Sawai O., Nunoura T. 2019. Reusing the generated sludge as Fe source in Fenton process for treating crepe rubber wastewater. J. Mater. Cycles Waste Manag. 21(2): 248–257.
Gan Q., Hou H.J., Liang S., Qiu J.J., Tao S.Y., Yang L., 2020. Sludge-derived biochar with multivalent iron as an efficient Fenton catalyst for degradation of 4-chlorophenol. Sci. Total Environ. 725: 138299.
Gialanella S., Girardi F., Ischia G., Lonardelli I., Mattarelli M., Montagna M. 2010. On the goethite to hematite phase transformation. J. Therm. Anal. Calorim. 102(3): 867–873.
Giles D.E., Mohapatra M., Issa T.B., Anand S., Singh P. 2011. Iron and aluminium based adsorption strategies for removing arsenic from water. J. Environ. Manage. 92(12): 3011–3022.
Gok O. 2012. Ferrous oxidation catalyzed by oxy-nitrogen species (NOx). Asian J. Chem. 24(12): 5485.
Gonzalez G., Sagarzazu A., Villalba R. 2000. Study of the mechano-chemical transformation of goethite to hematite by TEM and XRD. Mater. Res. Bull. 35(14): 2295–2308.
Guo Y., Li H.Y., Shen S., Cheng J., Diao J., Xie B. 2021. A novel process for comprehensive resource utilization of hazardous chromium sludge: progressive recovery of Si, V, Fe and Cr. J. Hazard. Mater. 405: 124669.
Gupta V.K., Gupta M., Sharma S. 2001. Process development for the removal of lead and chromium from aqueous solutions using red mud—an aluminium industry waste. Water Res. 35(5): 1125–1134.
Han X.G., Lu H.B., Gao Y.X., Chen X., Yang M. 2020. The role of in situ Fenton coagulation on the removal of benzoic acid. Chemosphere, 238: 124632.
Hedin R.S. 2016. Long-term minimization of mine water treatment costs through passive treatment and production of a saleable iron oxide sludge. In Annual Meeting of the International Mine Water Association (IMWA). Vol. 1. Technische Universität Bergakademie Freiberg, Inst. Min. & Spcial Civil Engn., Leipzig, Germany. pp. 1267–1273.
Hu T.K., Wang H.M., Ning R.Y., Qiao X.L., Liu Y.W., Dong W.Q., Zhu S.Y. 2020. Upcycling of Fe-bearing sludge: preparation of erdite-bearing particles for treating pharmaceutical manufacture wastewater. Sci. Rep. 10(1): 12999.
Huo Y., Asghar K., Liu Y.W., Wang Z.H., Yu Y., Sun T., 2021. Conversion of Fe-bearing minerals in sludge to nanorod erdite for real electroplating wastewater treatment: comparative study between ferrihydrite, hematite, magnetite, and troilite. J. Clean. Prod. 298: 126826.
Huo Y., Song X., Zhu S.Y., Chen Y., Lin X., Wu Y.Q., 2020. High-purity recycling of hematite and Zn/Cu mixture from waste smelting slag. Sci. Rep. 10(1): 9031.
Hussein A.M., Mahmoud R.K., Sillanpää M., Abdel Wahed M.S.M. 2021. Impacts alum DWTPs sludge discharge and changes in flow regime of the Nile River on the quality of surface water and cultivated soils in Fayoum watershed. Egypt. Sci. Total Environ. 766: 144333.
Idris A., Inanc B., Hassan M.N. 2004. Overview of waste disposal and landfills/dumps in Asian countries. J. Mater. Cycles Waste Manage. 6(2): 104–110.
Irfan M.F., Goo J.H., Kim S.D. 2008. Co3O4 based catalysts for NO oxidation and NOx reduction in fast SCR process. Appl. Catal., B, 78(3): 267–274.
Islam M.S., Ahmed M.K., Raknuzzaman M., Habibullah-Al-Mamun M., Kundu G.K. 2017. Heavy metals in the industrial sludge and their ecological risk: a case study for a developing country. J. Geochem. Explor. 172: 41–49.
Jaafar A.R., Isa M.H., Kutty S.R.M. 2008. Adsorption of zinc, cadmium and nickel from aqueous solutions using ground water sludge (GWS). In Water pollution IX. WIT transactions on ecology and the environment. Edited by D.P. Rico, C.A. Brebbia, Y. Villacampa, WIT Press, Ashurst, Southampton, UK. pp. 247–253.
Jaishankar M., Tseten T., Anbalagan N., Mathew B.B., Beeregowda N.K. 2014. Toxicity, mechanism and health effects of some heavy metals. Interdiscip. Toxicol. 7(2): 60–72.
Ji J., Li X.Y., Xu J., Yang X.Y., Meng H.S., Yan Z.R. 2018. Zn–Fe-rich granular sludge carbon (GSC) for enhanced electrocatalytic removal of bisphenol A (BPA) and rhodamine B (RhB) in a continuous-flow three-dimensional electrode reactor (3DER). Electrochim. Acta, 284: 587–596.
Kan C., Ibe H.A., Rivera P.K.K., Arazo O.R., De Luna G.M.D. 2017. Hexavalent chromium removal from aqueous solution by adsorbents synthesized from groundwater treatment residuals. Sustain. Environ. Res. 27(4): 163–171.
Keeley J., Jarvis P., Judd S.J. 2014. Coagulant recovery from water treatment residuals: a review of applicable technologies. Crit. Rev. Environ. Sci. Technol. 44(24): 2675–2719.
Kishimoto N., Kitamura T., Kato M., Otsu H. 2013. Reusability of iron sludge as an iron source for the electrochemical Fenton-type process using Fe2+/HOCl system. Water Res. 47(5): 1919–1927.
Kong L.J., Zhu Y.T., Liu M.X., Chang X.Y., Xiong Y., Chen D.Y. 2016. Conversion of Fe-rich waste sludge into nano-flake Fe-SC hybrid Fenton-like catalyst for degradation of AOII. Environ. Pollut. 216: 568–574.
Koymatcik C., Ozkaymak M., Selimli S. 2018. Recovery of iron particles from waste water treatment plant of an iron and steel factory. Eng. Sci. Technol. 21(3): 284–288.
Lahoutifard N., Lagrange P., Lagrange J. 2003. Kinetics and mechanism of nitrite oxidation by hypochlorous acid in the aqueous phase. Chemosphere, 50(10): 1349–1357.
Li H., Dai T.L., Chen J.A., Chen L., Li Y.X., Kan X.Q., 2021a. Enhanced sludge dewaterability by Fe-rich biochar activating hydrogen peroxide: co-hydrothermal red mud and reed straw. J. Environ. Manage. 296: 113239.
Li H.H., Zhang J.D., Cao Y.X., Wang Y., Li F., Liu C.Y., 2021b. Capture of elemental mercury from flue gas over a magnetic and sulfur-resistant sorbent prepared from Fe-containing sewage sludge activated with sulfuric acid. Fuel, 300: 120938.
Li J., Chen C.L., Zhao Y., Hu J., Shao D.D., Wang X.K. 2013. Synthesis of water-dispersible Fe3O4@ β-cyclodextrin by plasma-induced grafting technique for pollutant treatment. Chem. Eng. J. 229: 296–303.
Li X.Q., Cui J., Pei Y.S. 2018a. Granulation of drinking water treatment residuals as applicable media for phosphorus removal. J. Environ. Manage. 213: 36–46.
Li Y., Li J.H., Chen S.S., Diao W.H. 2012. Establishing indices for groundwater contamination risk assessment in the vicinity of hazardous waste landfills in China. Environ. Pollut. 165: 77–90.
Li Y.F., Yuan X.Z., Wang D.B., Wang H., Wu Z.B., Jiang L.B., 2018b. Recyclable zero-valent iron activating peroxymonosulfate synchronously combined with thermal treatment enhances sludge dewaterability by altering physicochemical and biological properties. Bioresour. Technol. 262: 294–301.
Liang D.X., Chen Y., Zhu S.Y., Gao Y.D., Sun T., Ri K.H., Xie X.F. 2021a. Low-temperature conversion of Fe-rich sludge to KFeS2 whisker: a new flocculant synthesis from laboratory scale to pilot scale. Sustain. Environ. Res. 31(1): 25.
Liang D.X., Ji M.H., Zhu S.Y., Chen Y., Wang Z.H., Liu Y.W., 2021b. A novel Fe recycling method from pickling wastewater producing a KFeS2 whisker for electroplating wastewater treatment. Environ. Sci. Water Res. Technol. 7(8): 1480–1491.
Lin X., Qu Z., Chen Y., Jin R.N., Su T., Yu Y., 2019. A novel application of hematite precipitation for high effective separation of Fe from Nd–Fe–B scrap. Sci. Rep. 9: 18362.
Liu B., Zang S.G., Tian J.J., Pan D.A., Zhu H.X. 2013. Strontium ferrite powders prepared from oily cold rolling mill sludge by solid-state reaction method. Rare Metals, 32(5): 518–523.
Liu B., Zhang S.G., Pan D.A., Chang C.C. 2016. Synthesis and characterization of micaceous iron oxide pigment from oily cold rolling mill sludge. Procedia Environ. Sci. 31: 653–661.
Liu C. 2015. Regeneration and comprehensive utilizationof rolling oil sludge. Master's thesis, School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai.
Liu C.G., Han Q., Chen Y., Zhu S.Y., Su T., Qu Z., 2021. Resource recycling of Mn-rich sludge: effective separation of impure Fe/Al and recovery of high-purity hausmannite. ACS Omega, 6(11): 7351–7359.
Liu H.T., Qu Y., Lu Y.D., Chang Z.Y., Yue Y.L. 2017a. Structural, thermal properties and chemical durability of aluminosilicate glasses prepared by Bayer red mud. Ionics, 23(8): 2091–2101.
Liu J.C., Yu Y., Zhu S.Y., Yang J.K., Song J., Fan W., 2018. Synthesis and characterization of a magnetic adsorbent from negatively-valued iron mud for methylene blue adsorption. PLOS One, 13(2): e0191229.
Liu Q.R., Li H.P., Fang X.K., Zhang J.J., Zhang C.X., Ma M.J., 2017b. Preparation of modified red mud-supported Fe catalysts for hydrogen production by catalytic methane decomposition. J. Nanomater. 2017: 8623463.
Liu Y.W., Asghar K., Wang Z.H., Chen Y., Zhu S.Y., Sun T., 2020. Upcycling of electroplating sludge to prepare erdite-bearing nanorods for the adsorption of heavy metals from electroplating wastewater effluent. Water, 12(4): 1027.
Liu Y.Y., Zhao B.C., Tang Y., Wan P.Y., Chen Y.M., Lv Z.J. 2014. Recycling of iron from red mud by magnetic separation after co-roasting with pyrite. Thermochim. Acta, 588: 11–15.
Lohri C.R., Camenzind E.J., Zurbrügg C. 2014. Financial sustainability in municipal solid waste management—costs and revenues in Bahir Dar, Ethiopia. Waste Manage. 34(2): 542–552.
Long Q.R., Yang T.R. 1999. Superior Fe-ZSM-5 ctalyst for selective catalytic reduction of nitric oxide by ammonia. J. Am. Chem. Soc., 121(23): 5595–5596.
Lu C.F., Liu Q.C., Quan X.J. 2017. Using abandoned mine drainage precipitate for mercury emission control for coal-fired power plant. Chinese J. Environ. Eng. 11(10): 5559–5564.
Lu Y.S., Dong W.K., Wang W.B., Ding J.J., Wang Q., Hui A.P., Wang A.Q. 2018. Optimal synthesis of environment-friendly iron red pigment from natural nanostructured clay minerals. Nanomaterials, 8(11): 925.
Mahtab M.S., Farooqi I.H., Khursheed A. 2021. Zero Fenton sludge discharge: a review on reuse approach during wastewater treatment by the advanced oxidation process. Int. J. Environ. Sci. Tech. 19(3): 2265–2278.
Majzlan J., Dachs E., Benisek A., Plášil J., Sejkora J. 2018. Thermodynamics, crystal chemistry and structural complexity of the Fe(SO4)(OH)(H2O)x phases: Fe(SO4)(OH), metahohmannite, butlerite, parabutlerite, amarantite, hohmannite, and fibroferrite. Eur. J. Mineral. 30(2): 259–275.
Man K.X., Zhu Q., Guo Z., Xing Z.P. 2018. Fe-Ti/Fe(II)-loading on ceramic filter materials for residual chlorine removal from drinking water. Chemosphere, 200: 405–411.
Mayes W.M., Burke I.T., Gomes H.I., Anton Á.D., Molnár M., Feigl V., Ujaczki É. 2016. Advances in understanding environmental risks of red mud after the Ajka spill, Hungary. J. Sustainable Metall. 2(4): 332–343.
Mayes W.M., Jarvis A.P., Burke I.T., Walton M., Feigl V., Klebercz O., Gruiz K. 2011. Dispersal and attenuation of trace contaminants downstream of the Ajka bauxite residue (red mud) depository failure, Hungary. Environ. Sci. Technol. 45(12): 5147–5155.
Mccormick N., Younker J., Mackie A., Walsh M. 2009. Data review from full-scale installations for water treatment plant residuals treatment processes. Technical Report, American Water Works Association, Halifax, Nova Scotia, Canada.
Melali A.R., Shariatmadari H. 2008. Application of steel making slag and converter sludge in farm manure enrichment for corn nutrition in greenhouse conditions. J. Crop Prod. Process. 11(42): 505–513.
Moon B.H., Park Y.B., Park K.H. 2011. Fenton oxidation of Orange II by pre-reduction using nanoscale zero-valent iron. Desalination, 268(1–3): 249–252.
Moraghan J.T., Buresh R.J. 1977. Chemical reduction of nitrite and nitrous oxide by ferrous iron. Soil. Sci. Soc. Am. J., 41(1): 47–50.
Motlagh A.H., Klyuev S.V., Surendar A., Ibatova A.Z., Maseleno A. 2018. Catalytic gasification of oil sludge with calcined dolomite. Petrol. Sci. Technol. 36(23): 1998–2002.
Muhler M., Schütze J., Wesemann M., Rayment T., Dent A., Schlögl R., Ertl G. 1990. The nature of the iron oxide-based catalyst for dehydrogenation of ethylbenzene to styrene: I. Solid-state chemistry and bulk characterization. J. Catal. 126(2): 339–360.
Nagar R., Sarkar D., Makris C.K., Datta R. 2010. Effect of solution chemistry on arsenic sorption by Fe- and Al-based drinking-water treatment residuals. Chemosphere, 78(8): 1028–1035.
Nathanson J.A. 2020. Hazardous-waste management [online]. Available from https://www.britannica.com/explore/savingearth/hazardous-waste-management[accessed 18 April 2021].
Nolasco-Sobrinho P.J., Espinosa D.C.R., Tenório J.A.S. 2003. Characterisation of dusts and sludges generated during stainless steel production in Brazilian industries. Ironmak. Steelmak. 30(1): 11–17.
Orescanin V., Durgo K., Mikelic I.L., Halkijevic I., Kuspilic M. 2018. Toxicity assessment of untreated/treated electroplating sludge using human and plant bioassay. J. Environ. Sci. Health, Part A: Toxic/Hazard. Subst. Environ. Eng. 53(2): 1–6.
Ovčačíková H., Velička M., Maierová P., Vlček J., Tokarský J., Čegan T. 2021. Characterization of waste sludge pigment from production of ZnCl2. Minerals, 11(3): 313.
Ozden B., Brennan C., Landsberger S. 2019. Investigation of bauxite residue (red mud) in terms of its environmental risk. J. Radioanal. Nucl. Chem. 319(1): 339–346.
Patrick N.L., Kenneth J.D.M., Guy N.L.J., Rahier H., Melo U.F.C. 2013. The role of iron in the formation of inorganic polymers (geopolymers) from volcanic ash: a 57Fe Mössbauer spectroscopy study. J. Mater. Sci. 48(15): 5280–5286.
Perera S.D., Cashion D.J., Blackford G.M., Zhang Z.M., Vance R.E. 2007. Fe speciation in geopolymers with Si/Al molar ratio of ∼2. J. Eur. Ceram. Soc. 27(7): 2697–2703.
Phenrat T., Marhaba T.F., Rachakornkij M. 2005. A SEM and X-ray study for investigation of solidified/stabilized arsenic–iron hydroxide sludge. J. Hazard. Mater. 118(1): 185–195.
Poulin É., Blais J.-F., Mercier G. 2008. Transformation of red mud from aluminium industry into a coagulant for wastewater treatment. Hydrometallurgy, 92(1): 16–25.
Pullar R.C., Hajjaji W., Amaral J.S., Seabra M.P., Labrincha J.A. 2014. Magnetic properties of ferrite ceramics made from wastes. Waste Biomass Valorization, 5(1): 133–138.
Qin S.X., Wang L.L., Zhang X., Su G.S. 2010. Grafting poly(ethylene glycol) monomethacrylate onto Fe3O4 nanoparticles to resist nonspecific protein adsorption. Appl. Surf. Sci. 257(3): 731–735.
Qu Z., Dong G., Zhu S.Y., Yu Y., Huo M.X., Xu K., Liu M.L. 2020. Recycling of groundwater treatment sludge to prepare nano-rod erdite particles for tetracycline adsorption. J. Clean. Prod. 257: 120462.
Qu Z., Su T., Chen Y., Lin X., Yu Y., Zhu S.Y., 2019a. Effective enrichment of Zn from smelting wastewater via an integrated Fe coagulation and hematite precipitation method. Front. Env. Sci. Eng. 13(6): 94.
Qu Z., Su T., Zhu S.Y., Chen Y., Yu Y., Xie X.F., 2021. Stepwise extraction of Fe, Al, Ca, and Zn: a green route to recycle raw electroplating sludge. J. Environ. Manage. 300: 113700.
Qu Z., Wu Y.Q., Zhu S.Y., Yu Y., Huo M.X., Zhang L.L., 2019b. Green synthesis of magnetic adsorbent using groundwater treatment sludge for tetracycline adsorption. Engineering, 5(5): 880–887.
Ramachandran K., Kikukawa N. 2000. Plasma in-flight treatment of electroplating sludge. Vacuum, 59(1): 244–251.
Razali M., Zhao Y.Q., Bruen M. 2007. Effectiveness of a drinking-water treatment sludge in removing different phosphorus species from aqueous solution. Sep. Purif. Technol. 55(3): 300–306.
Rebosura M., Salehin S., Pikaar I., Keller J., Yuan Z. 2020. The impact of primary sedimentation on the use of iron-rich drinking water sludge on the urban wastewater system. J. Hazard. Mater. 402(2): 124051.
Sadasivam S., Thomas H.R. 2016. Colour and toxic characteristics of metakaolinite–hematite pigment for integrally coloured concrete, prepared from iron oxide recovered from a water treatment plant of an abandoned coal mine. J. Solid State Chem. 239: 246–250.
Sahu R.C., Patel R.K., Ray B.C. 2010. Neutralization of red mud using CO2 sequestration cycle. J. Hazard. Mater. 179(1–3): 28–34.
Schaber M.P., Colson J., Higgins S., Thielen D., Anspach B., Brauer J. 2004. Thermal decomposition (pyrolysis) of urea in an open reaction vessel. Thermochim. Acta, 424(1-2): 131–142.
Shan C., Ma Z.Y., Tong M.P., Ni J.R. 2015. Removal of Hg(II) by poly(1-vinylimidazole)-grafted Fe3O4@ SiO2 magnetic nanoparticles. Water Res. 69: 252–260.
Shao L.H., Wei G.T., Wang Y.Z., Li Z.M., Zhang L.Y., Zhao S.K., Zhou M. 2016. Preparation and application of acidified/calcined red mud catalyst for catalytic degradation of butyl xanthate in Fenton-like process. Environ. Sci. Pollut. Res. 23(15): 15202–15207.
Sharma K.D. 1990. An approach to reduce magnesium from zinc electrolyte with recovery of zinc from disposed residue of an effluent treatment plant. Hydrometallurgy, 24(3): 407–415.
Shi L., Ruan S., Li J., Gerson A.R. 2017. Desilication of low alumina to caustic liquor seeded with sodalite or cancrinite. Hydrometallurgy, 170: 5–15.
Soner Altundoğan H., Altundoğan S., Tümen F., Bildik M. 2000. Arsenic removal from aqueous solutions by adsorption on red mud. Waste Manage. 20(8): 761–767.
Soutsos M. 2012. Background of geopolymer research [online]. Available from https://blogs.qub.ac.uk/geopolymer/geopolymer-background/ [accessed 3 December 2012].
Su R.J., Liang B., Guan J. 2016. Leaching effects of metal from electroplating sludge under phosphate participation in hydrochloric acid medium. Procedia Environ. Sci. 31: 361–365.
Su T., Bian R., Chen Y., Zhu S.Y., Huo Y., Liu J.C. 2020a. Improvement of a hydrometallurgical process for recovering Mn from electric-arc furnace slag. Miner. Eng., 159: 106644.
Su T., Han Z.J., Qu Z., Chen Y., Lin X., Zhu S.Y., 2020b. Effective recycling of Co and Sr from Co/Sr-bearing wastewater via an integrated Fe coagulation and hematite precipitation approach. Environ. Res. 187: 109654.
Su Y.Y., Zhu Q., Li J., Wang D.D., Xing Z.P., Fang L. 2019. Fe(II) and Mn(II) removal by Ca(II)-manganite (γ-MnOOH)-modified red mud granules in water. RSC Adv. 9(18): 10305–10313.
Suksiripattanapong C., Horpibulsuk S., Chanprasert P., Sukmak P., Arulrajah A. 2015. Compressive strength development in fly ash geopolymer masonry units manufactured from water treatment sludge. Constr. Build. Mater. 82: 20–30.
Sun J., Pikaar I., Sharma K.R., Keller J., Yuan Z.G. 2015. Feasibility of sulfide control in sewers by reuse of iron rich drinking water treatment sludge. Water Res. 71: 150–159.
Sushil S., Alabdulrahman A.M., Balakrishnan M., Batra V.S., Blackley R.A., Clapp J., 2010. Carbon deposition and phase transformations in red mud on exposure to methane. J. Hazard. Mater. 180(1–3): 409–418.
Taheri A., Taheri A., Fathivand A.A., Mansouri N. 2019. Risk assessment of naturally occurring radioactive materials (NORM) in the hydrocarbon sludge extracted from the South Pars gas field in Iran. Process Saf. Environ. 125: 102–120.
Tamat M.S. 2008. Thickening of municipal sludge and treatment of leachate using recycled ferrous sulphate (RFS) extracted from groundwater treatment plant sludge. Bachelor thesis, Civil Engineering, Universiti Teknologi Petronas,  Seri Iskandar, Perak, Malaysia.
Tang Y.Y., Chan S.W., Shih K.M. 2014. Copper stabilization in beneficial use of waterworks sludge and copper-laden electroplating sludge for ceramic materials. Waste Manage. 34(6): 1085–1091.
Tanvar H., Mishra B. 2021. Hydrometallurgical recycling of red mud to produce materials for industrial applications: alkali separation, iron leaching and extraction. Metall. Mater. Trans., B, 52(5): 3543–3557.
Tezcan Un U., Onpeker S.E., Ozel E., 2017. The treatment of chromium containing wastewater using electrocoagulation and the production of ceramic pigments from the resulting sludge. J. Environ. Manage. 200: 196–203.
Valero A., Umbría-Salinas K., Wallner-Kersanach M., Andrade C.F.D., Zhang H. 2019. Potential availability of trace metals in sediments in southeastern and southern Brazilian shipyard areas using the DGT technique and chemical extraction methods. Sci. Total Environ. 710: 136216.
Vilardi G., Rodríguez-Rodríguez J., Ochando-Pulido J.M., Verdone N., Martinez-Ferez A., Di Palma L. 2018. Large laboratory-plant application for the treatment of a tannery wastewater by Fenton oxidation: Fe(II) and nZVI catalysts comparison and kinetic modelling. Process Saf. Environ. Prot. 117: 629–638.
Vrijheid M., Dolk H., Busby A., Boschi G., Armstrong B., Jorgensen T., Pointer P. 2002. Hazard potential ranking of hazardous waste landfill sites and risk of congenital anomalies. Occup. Environ. Med. 59(11): 768–776.
Wang B., Ma J., Wang D., Gong Z.Q., Shi Q.L., Gao C., 2021a. Acid-pretreated red mud for selective catalytic reduction of NOx with NH3: insights into inhibition mechanism of binders. Catal. Today, 376: 247–254.
Wang J., Kou L.D., Zhao L., Duan W.J. 2020a. One-pot fabrication of sludge-derived magnetic Fe,N-codoped carbon catalysts for peroxymonosulfate-induced elimination of phenolic contaminants. Chemosphere, 248: 126076.
Wang M.W., Zhao Z.Q., Zhang Y.B. 2019. Disposal of Fenton sludge with anaerobic digestion and the roles of humic acids involved in Fenton sludge. Water Res. 163: 114900.
Wang Q., Jung H., Wan B., Liu P., Yang P., Tang Y.Z. 2021b. Transformation kinetics of phosphorus and nitrogen in iron-rich sewage sludges during hydrothermal treatment and recovery of nutrients from process water. ACS Sustain. Chem. Eng. 9(31): 10630–10641.
Wang Y., Li H.H., Shao Y., Guo H.J., Liu Z., Hu G.F., 2021c. Removal of elemental mercury using magnetic Fe-containing carbon prepared from sludge flocculated with ferrous sulfate by zinc chloride activation. J. Energy Inst. 98: 98–106.
Wang Y.J., Ding J., Ma S.H., Zheng S.L., Zhang Y. 2013. Separation of iron oxide and sodium-silicon residue in Fe-rich red mud. Chin. J. Process Eng. 13(5): 795–800.
Wang Z.H., Liu Y.W., Qu Z., Su T., Zhu S.Y., Sun T., 2020b. In situ conversion of goethite to erdite nanorods to improve the performance of doxycycline hydrochloride adsorption. Colloid. Surface. A, 126132.
Wen Z.C., Ma S.H., Zheng S.L., Zhang Y., Liang Y. 2016. Assessment of environmental risk for red mud storage facility in China: a case study in Shandong Province. Environ. Sci. Pollut. Res. 23(11): 11193–11208.
Wiercik P., Matras K., Burszta-Adamiak E., Kuśnierz M. 2016. Analysis of the properties and particle size distribution of spent filter backwash water from groundwater treatment at various stages of filters washing. Environ. Prot. Eng. 19(1): 149–161.
Wu R.C., Qu J.H. 2004. Removal of azo dye from water by magnetite adsorption–Fenton oxidation. Water Environ. Res. 76(7): 2637–2642.
Xu Y.P., Chen C.Y., Lan Y.P., Wang L.Z., Li J.Q. 2020. Desilication and recycling of alkali-silicate solution seeded with red mud for low-grade bauxite utilization. J. Mater. Res. Technol. 9(4): 7418–7426.
Yang J.K. 2007. Comprehensive ultilization of red mud [online]. Available from http://www.redmud.hust.edu.cn/cpzs/cncp.htm [accessed 15 September 2017].
Yang S.Y., Xu D., He S.S., Yan W.J., Xiong Y.Q. 2020. Modified Fe-rich palygorskite as an efficient and low-cost heterogeneous Fenton catalyst for NOx and SO2 removal. Energy Fuels, 34(7): 8493–8502.
Ye N., Chen Y., Yang J.K., Liang S., Hu Y., Hu J.P., 2017. Transformations of Na, Al, Si and Fe species in red mud during synthesis of one-part geopolymers. Cement Concrete Res. 101: 123–130.
Ye X.C., Lin Z.H., Liang S.J., Huang X.H., Qiu X.Y., Qiu Y.C., 2019. Upcycling of electroplating sludge into ultrafine Sn@C nanorods with highly stable lithium storage performance. Nano Lett. 19(3): 1860–1866.
Yuan S., Liu X., Gao P., Han Y.X. 2020. A semi-industrial experiment of suspension magnetization roasting technology for separation of iron minerals from red mud. J. Hazard. Mater. 394: 122579.
Zeng S.L., Gan N., Weideman-Mera R., Cao Y.T., Li T.H., Sang W.G. 2013. Enrichment of polychlorinated biphenyl 28 from aqueous solutions using Fe3O4 grafted graphene oxide. Chem. Eng. J. 218: 108–115.
Zhang B., Wang Y.H., Tang X.Y., Wang S.P., Wei C.S., Wang R., Zhang W. 2019. Oxidation of high iron content electroplating sludge in supercritical water: stabilization of zinc and chromium. Environ. Sci. Pollut. Res. 26(15): 15001–15010.
Zhang J.H., Guo Q., Tian C., Zhan W.L., Chen S.W., He Z.J. 2020a. High-efficiency preparation of Fe–Al based flocculants from red mud by microwave selective carbothermic reduction and magnetic separation. Environ. Prog. Sustain. 39(6): e13466.
Zhang L.F., Huang D. 2017. An overview of the integrated use of bulk solid waste in the steel industry. Metall. Manage. 4: 27–32.
Zhang M.T., Chen C., Mao L.Q., Wu Q. 2018. Use of electroplating sludge in production of fired clay bricks: characterization and environmental risk evaluation. Constr. Build. Mater. 159: 27–36.
Zhang M.X., Chen H.Y. 2018. Steam jet mill—a prospective solution to industrial exhaust steam and solid waste. Environ. Sci. Pollut. Res. 25(18): 17842–17854.
Zhang X.K., Zhou K.G., Lei Q.Y., Xing Y., Peng C.H., Chen W. 2020b. Integration of resource recycling with de-alkalization for bauxite residue treatment. Hydrometallurgy, 192: 105263.
Zhao J.M. 1994. Ferrihydrite: surface structure and its effects on phase transformation. Clays Clay Miner. 42(6): 737–746.
Zhou H.F., Deng Z.B., Liu T.B., Liu T., Zhang L.J., Su X.T., Lin Z. 2020. In situ controlled synthesis of porous Fe–N–C materials from oily sludge by chlorinating calcination and their novel application in supercapacitors. Environ. Sci.: Nano, 7(12): 3814–3823.
Zhou X.J., Zhou J.J., Yang C.H., Gui W.H. 2018. Set-point tracking and multi-objective optimization-based PID control for the goethite process. IEEE Access, 6: 36683–36698.
Zhu D.Q., Chun T.J., Pan J., He Z. 2012. Recovery of iron from high-iron red mud by reduction roasting with adding sodium salt. J. Iron Steel Res. Int. 19(8): 1–5.
Zhu S.J., Wang W., Xu Y.P., Zhu Z.G., Liu Z.Q., Cui F.Y. 2019. Iron sludge-derived magnetic Fe0/Fe3C catalyst for oxidation of ciprofloxacin via peroxymonosulfate activation. Chem. Eng. J. 365: 99–110.
Zhu S.Y., Dong G., Yu Y., Yang J.K., Yang W., Fan W., 2018. Hydrothermal synthesis of a magnetic adsorbent from wasted iron mud for effective removal of heavy metals from smelting wastewater. Environ. Sci. Pollut. Res. 25(23): 22710–22724.
Zhu S.Y., Fang S., Huo M.X., Yu Y., Chen Y., Yang X., 2015. A novel conversion of the groundwater treatment sludge to magnetic particles for the adsorption of methylene blue. J. Hazard. Mater. 292: 173–179.
Zhu S.Y., Li T., Wu Y.Q., Chen Y., Su T., Ri K.H., Huo Y. 2020a. Effective purification of cold-rolling sludge as iron concentrate powder via a coupled hydrothermal and calcination route: from laboratory-scale to pilot-scale. J. Clean. Prod. 276: 124274.
Zhu S.Y., Lin X., Dong G., Yu Y., Yu H.B., Bian D.J., 2019a. Valorization of manganese-containing groundwater treatment sludge by preparing magnetic adsorbent for Cu(II) adsorption. J. Environ. Manage. 236: 446–454.
Zhu S.Y., Liu Y.W., Huo Y., Chen Y., Qu Z., Yu Y., 2019b. Addition of MnO2 in synthesis of nano-rod erdite promoted tetracycline adsorption. Sci. Rep. 9: 16906.
Zhu S.Y., Song X., Chen Y., Dong G., Sun T., Yu H.B., 2020b. Upcycling of groundwater treatment sludge to an erdite nanorod as a highly efficient activation agent of peroxymonosulfate for wastewater treatment. Chemosphere, 252: 126586.
Zhu S.Y., Wu Y.Q., Huo M.X., Lin X., Qu Z., Su T., 2019c. A novel application of hematite precipitation for high-purity enrichment of nickel and zinc from smelting wastewater. Acta Sci. Circumst. 39(10): 3381–3386.
Zhu S.Y., Wu Y.Q., Qu Z., Zhang L.L., Yu Y., Xie X.F., 2020c. Green synthesis of magnetic sodalite sphere by using groundwater treatment sludge for tetracycline adsorption. J. Clean. Prod. 247: 119140.
Zhu S.Y., Yang X., Wang G.I., Zhang L.L., Zhu H.F., Huo M.X. 2011. Facile preparation of P-25 films dip-coated nickel foam and high photocatalytic activity for the degradation of quinoline and industrial wastewater. Int. J. Chem. React. Eng. 9(1): A37.
Zhu W.P., Yang Z.H. 1995. Recovery of valuable metals from electroplating sludge by solvent extraction. Water Wastewater Eng. 12: 16–18.
Zhu W.P., Ye B.Q., Yang Z.H., Jiang Z.P. 1998. Recovery of metal from iron–chromium residue by means of solvent extraction. Environ. Sci. 19(3): 35–38.

Information & Authors

Information

Published In

cover image Environmental Reviews
Environmental Reviews
Volume 30Number 3September 2022
Pages: 460 - 484

History

Received: 13 April 2021
Accepted: 14 January 2022
Accepted manuscript online: 19 July 2022
Published online: 19 July 2022
Version of record online: 19 July 2022

Permissions

Request permissions for this article.

Key Words

  1. Fe-rich sludge
  2. comprehensive utilization
  3. adsorbent
  4. iron concentrate powder
  5. flocculant.

Mots-clés

  1. boues riches en Fe
  2. utilisation complète
  3. adsorbant
  4. poudre concentrée en fer
  5. floculant.

Authors

Affiliations

Chen Yu
Science and Technology Innovation Centre for Municipal Wastewater Treatment and Water Quality Protection, Northeast Normal University, Changchun 130117, Jilin, China
School of Hydraulic and Environmental Engineering, Changchun Institute of Technology, Changchun 130012, Jilin, China
Liang Dongxu
Science and Technology Innovation Centre for Municipal Wastewater Treatment and Water Quality Protection, Northeast Normal University, Changchun 130117, Jilin, China
School of Hydraulic and Environmental Engineering, Changchun Institute of Technology, Changchun 130012, Jilin, China
Chen Yu and Liang Dongxu contributed equally to this paper and are co-first authors.
Chen Hongyu
Science and Technology Innovation Centre for Municipal Wastewater Treatment and Water Quality Protection, Northeast Normal University, Changchun 130117, Jilin, China
Chen Yu and Liang Dongxu contributed equally to this paper and are co-first authors.
Science and Technology Innovation Centre for Municipal Wastewater Treatment and Water Quality Protection, Northeast Normal University, Changchun 130117, Jilin, China
School of Hydraulic and Environmental Engineering, Changchun Institute of Technology, Changchun 130012, Jilin, China
Science and Technology Innovation Centre for Municipal Wastewater Treatment and Water Quality Protection, Northeast Normal University, Changchun 130117, Jilin, China
Yang Jiakuan jkyang@hust.edu.cn
School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
Xie Xinfeng xinfengx@mtu.edu
College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI 49931, USA
Joseph Eskola
College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI 49931, USA
Bian Dejun
Science and Technology Innovation Centre for Municipal Wastewater Treatment and Water Quality Protection, Northeast Normal University, Changchun 130117, Jilin, China
School of Hydraulic and Environmental Engineering, Changchun Institute of Technology, Changchun 130012, Jilin, China

Metrics & Citations

Metrics

Other Metrics

Citations

Cite As

Export Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

1. Structural, optical, and magnetic properties of submicron hematite (α-Fe2O3) particles synthesized from industrial steel waste

View Options

Get Access

Login options

Check if you access through your login credentials or your institution to get full access on this article.

Subscribe

Click on the button below to subscribe to Environmental Reviews

Purchase options

Purchase this article to get full access to it.

Restore your content access

Enter your email address to restore your content access:

Note: This functionality works only for purchases done as a guest. If you already have an account, log in to access the content to which you are entitled.

View options

PDF

View PDF

Full Text

View Full Text

Media

Media

Other

Tables

Share Options

Share

Share the article link

Share with email

Email a colleague

Share on social media