Cookies Notification

We use cookies to improve your website experience. To learn about our use of cookies and how you can manage your cookie settings, please see our Cookie Policy.
×

Impact of climate change on catchment nutrient dynamics: insights from around the world

Publication: Environmental Reviews
8 September 2022

Abstract

This study is a meta-analysis of global articles on hydrological nutrient dynamics to determine trends and consensus on: (1) the effects of climate change-induced hydrological and temperature drivers on nutrient dynamics and how these effects vary along the catchment continuum from land to river to lake; (2) the convergence of climate change impacts with other anthropogenic pressures (agriculture, urbanization) in nutrient dynamics; and (3) regional variability in the effects of climate change on nutrient dynamics and water-quality impairment across different climate zones. An innovative web crawler tool was employed to help critically synthesize the information in the literature. The literature suggests that climate change will impact nutrient dynamics around the globe and exacerbate contemporary water-quality challenges. Nutrient leaching and overland flow transport are projected to increase globally, promoted by extreme precipitation. Seasonal variations in streamflow are expected to emulate changing precipitation patterns, but the specific local impacts of climate change on hydrology and nutrient dynamics will vary both seasonally and regionally. Plant activity may reduce some of this load in nonagricultural soils if the expected increase in plant uptake of nutrients prompted by increased temperatures can compensate for greater nitrogen (N) and phosphorus (P) mineralization, N deposition, and leaching rates. High-temperature forest and grass fires may help reduce mineralization and microbial turnover by altering N speciation via the pyrolysis of organic matter. In agricultural areas that are at higher risk of erosion, extreme precipitation will exacerbate existing water-quality issues, and greater plant nutrient uptake may lead to an increase in fertilizer use. Future urban expansion will amplify these effects. Higher ambient temperatures will promote harmful cyanobacterial blooms by enhancing thermal stratification, increasing nutrient load into streams and lakes from extreme precipitation events, decreasing summer flow and thus baseflow dilution capacity, and increasing water and nutrient residence times during increasingly frequent droughts. Land management decisions must consider the nuanced regional and seasonal changes identified in this review (realized and predicted). Such knowledge is critical to increasing international cooperation and accelerating action toward the United Nations’s global sustainability goals and the specific objectives of the Conference of Parties (COP) 26.

Résumé

Cette étude est une méta-analyse d’articles mondiaux sur la dynamique hydrologique des nutriments afin de déterminer les tendances et le consensus sur (1) les effets des facteurs hydrologiques et de température induits par le changement climatique sur la dynamique des nutriments et la manière dont ces effets varient le long du continuum des bassins versants, de la terre à la rivière et au lac ; (2) la convergence des impacts du changement climatique en présence d’autres pressions anthropiques (agriculture, urbanisation) dans la dynamique des nutriments ; et (3) la variabilité régionale des effets du changement climatique sur la dynamique des nutriments et la dégradation de la qualité de l’eau dans différentes zones climatiques. Un outil innovant d’exploration du Web a été utilisé pour aider à synthétiser de manière critique les informations contenues dans la littérature. La littérature suggère que le changement climatique aura un impact sur la dynamique des nutriments dans le monde entier et exacerbera les défis contemporains de qualité de l’eau. Le lessivage des nutriments et le ruissellement de surface devraient augmenter à l’échelle mondiale, favorisés par des précipitations extrêmes. Les variations saisonnières du débit des cours d’eau devraient reproduire les variations des patrons de précipitations, mais les effets locaux spécifiques du changement climatique sur l’hydrologie et la dynamique des nutriments varieront à la fois selon les saisons et les régions. L’activité des plantes peut réduire une partie de cette charge dans les sols non agricoles si l’augmentation prévue de l’absorption des nutriments par les plantes en raison de l’augmentation des températures peut compenser l’augmentation de la minéralisation de N et P, des dépôts de N et des taux de lessivage. Les feux de forêt et d’herbe à haute température peuvent contribuer à réduire la minéralisation et le renouvellement microbien en modifiant la spéciation de N par la pyrolyse de la matière organique. Dans les zones agricoles plus exposées à l’érosion, les précipitations extrêmes exacerberont les problèmes de qualité de l’eau existants, et l’absorption accrue de nutriments par les plantes pourrait entraîner une augmentation de l’utilisation d’engrais. L’expansion urbaine future amplifiera ces effets. Des températures ambiantes plus élevées favoriseront la prolifération de cyanobactéries nuisibles en renforçant la stratification thermique, en augmentant la charge en nutriments dans les cours d’eau et les lacs à la suite de précipitations extrêmes, en diminuant le débit estival et donc la capacité de dilution du débit de base, et en augmentant le temps de séjour de l’eau et des nutriments pendant les sécheresses de plus en plus fréquentes. Les décisions de gestion des terres doivent tenir compte des changements régionaux et saisonniers nuancés identifiés dans cette revue (réalisés et prévus). Ces connaissances sont essentielles pour renforcer la coopération internationale et accélérer les actions visant à atteindre les objectifs de développement durable des Nations unies à l’échelle mondiale et les objectifs spécifiques de la COP26.

Get full access to this article

View all available purchase options and get full access to this article.

References

FAO. 2009. Global agriculture towards 2050. High Level Expert Forum Issues Paper. FAO, Rome. Available from https://www.fao.org/fileadmin/templates/wsfs/docs/Issues_papers/HLEF2050_Global_Agriculture.pdf.
Alamdari N., Sample D.J., Ross A.C., Easton Z.M. 2020. Evaluating the impact of climate change on water quality and quantity in an urban watershed using an ensemble approach. Estuar. Coasts, 43: 56–72.
Alexander A.C., Levenstein B., Sanderson L.A., Blukacz-Richards E.A., Chambers P.A. 2020. How does climate variability affect water quality dynamics in Canada’s oil sands region? Sci. Total Environ. 732: 139062.
Arnold J.G., Srinivasan R., Muttiah R.S., Williams J.R. 1998. Large area hydrologic modelling and assessment. Part I: Model development. JAWRA J. Am. Water Res. Assoc. 34: 73–89.
Ba W., Du P., Liu T., Bao A., Chen X., Liu J., Qin C. 2020. Impacts of climate change and agricultural activities on water quality in the Lower Kaidu River Basin, China. J. Geogr. Sci. 30: 164–176.
Bartosova A., Capell R., Olesen J.E., Jabloun M., Refsgaard J.C., Donnelly C., 2019. Future socioeconomic conditions may have a larger impact than climate change on nutrient loads to the Baltic Sea. Ambio, 48: 1325–1336.
Baulch H.M., Elliott J.A., Cordeiro M.R., Flaten D.N., Lobb D.A., Wilson H.F. 2019. Soil and water management: opportunities to mitigate nutrient losses to surface waters in the northern great plains. Environ. Rev. 27(4): 447–477.
Bhattacharya A., Pal B., Mukherjee S., Roy S.K. 2019. Assessment of nutritional status using anthropometric variables by multivariate analysis. BMC Public Health, 19: 1045.
Bicknell B.R., Imhoff J.C., Kittle J.L. Jr., Donigan A.S. Jr., Johanson R.C. 1997. Hydrological Simulation Program–Fortran, User’s manual for version 11: U.S. Environmental Protection Agency. National Exposure Research Laboratory, Athens, Ga., EPA/600/R-97/080, p. 755.
Birgand F., Skaggs R.W., Chescheir G.M., Gilliam J.W. 2007. Nitrogen removal in streams of agricultural catchments—a literature review. Crit. Rev. Env. Sci. Techn. 37: 381–487.
Björsne A.K., Rütting T., Ambus P. 2014. Combined climate factors alleviate changes in gross soil nitrogen dynamics in heathlands. Biogeochemistry, 120: 191–201.
Blenckner T. 2005. A conceptual model of climate-related effects on lake ecosystems. Hydrobiologia, 533: 1–14.
Bourne A., Armstrong N., Jones G. 2002. A preliminary estimate of total nitrogen and total phosphorus loading to streams in Manitoba, Canada. Manitoba Conservation Report No. 2002-04. Available from https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.528.6798&rep=rep1&type=pdf
Boutin M., Corcket E., Alard D., Villar L., Jiménez J.J., Blaix C., 2017. Nitrogen deposition and climate change have increased vascular plant species richness and altered the composition of grazed subalpine grasslands. J. Ecol. 105: 1199–1209.
Bowes M.J., Smith J.T., Jarvie H.P., Neal C. 2008. Modelling of phosphorus inputs to rivers from diffuse and point sources. Sci. Total Environ. 395: 125–138.
Brown L., Barnwell T. 1987. The enhanced stream water quality models QUAL2E and QUAL2E-UNCAS: documentation and user manual. Environmental Research Laboratory, Office of Research and Development, US Environmental Protection Agency. Available from https://nepis.epa.gov/Exe/ZyPURL.cgi?Dockey=30000KGT.TXT
Bussi G., Janes V., Whitehead P.G., Dadson S.J., Holman I.P. 2017. Dynamic response of land use and river nutrient concentration to long-term climatic changes. Sci. Total Environ. 590-591: 818–831.
Bussi G., Whitehead P.G., Bowes M.J., Read D.S., Prudhomme C., Dadson S.J. 2016. Impacts of climate change, land-use change and phosphorus reduction on phytoplankton in the River Thames (UK). Sci. Total Environ. 572: 1507–1519.
Bussi G., Whitehead P.G., Jin L., Taye M.T., Dyer E., Hirpa F.A., 2021. Impacts of climate change and population growth on river nutrient loads in a data scarce region: the Upper Awash River (Ethiopia). Sustainability, 13: 1254.
Charlton M.B., Bowes M.J., Hutchins M.G., Orr H.G., Soley R., Davison P. 2018. Mapping eutrophication risk from climate change: future phosphorus concentrations in English rivers. Sci. Total Environ. 613–614: 1510–1526.
Chen J., Sudicky E.A., Davison J.H., Frey S.K., Park Y.J., Hwang H.T., 2020a. Towards a climate-driven simulation of coupled surface-subsurface hydrology at the continental scale: a Canadian example. Can. Water Resour. J. 45: 11–27.
Chen Q., Ni Z., Wang S., Guo Y., Liu S. 2020b. Climate change and human activities reduced the burial efficiency of nitrogen and phosphorus in sediment from Dianchi Lake, China. J. Clean. Prod. 274: 122839.
Chung E.S., Lee K.S. 2009. Prioritization of water management for sustainability using hydrologic simulation model and multicriteria decision making techniques. J. Environ. Manage. 90: 1502–1511.
Costa D., Pomeroy J.W., Brown T., Baulch H., Elliott J., Macrae M. 2021. Advances in the simulation of nutrient dynamics in cold climate agricultural basins: developing new nitrogen and phosphorus modules for the cold regions hydrological modelling platform. J. Hydrol. 603: 126901.
Crossman J., Futter M.N., Oni S.K., Whitehead P.G., Jin L., Butterfield D., 2013. Impacts of climate change on hydrology and water quality: future proofing management strategies in the Lake Simcoe watershed, Canada. J. Great Lakes Res. 39: 19–32.
Crossman J., Futter M.N., Whitehead P.G., Stainsby E., Baulch H.M., Jin L., 2014. Flow pathways and nutrient transport mechanisms drive hydrochemical sensitivity to climate change across catchments with different geology and topography. Hydrol. Earth Syst. Sci. 18: 5125–5148.
Crumpton W., Isenhart T. 1993. Fate of non-point source nitrate loads in freshwater wetlands: results from experimental wetland mesocosms. In Constructed Wetlands for Water Quality Improvement. Edited by G.A. Moshiri. CRC Press, Boca Raton, Florida. pp. 283–291.
Davidson E.A., David M.B., Galloway J.N., Goodale C.L., Haeuber R., Harrison J.A., 2011. Excess nitrogen in the U.S. environment: trends, risks, and solutions. Issues in Ecology, Number 15, Winter 2012. Available from https://pubs.er.usgs.gov/publication/70032270.
Deng Q., Hui D., Dennis S., Reddy K.C. 2017. Responses of terrestrial ecosystem phosphorus cycling to nitrogen addition: a meta-analysis. Global Ecol. Biogeogr. 26: 713–728.
Deng Q., Hui D., Luo Y., Elser J., Ping Wang Y., Loladze I., 2015. Down-regulation of tissue N:P ratios in terrestrial plants by elevated CO2. Ecology, 96: 3354–3362.
Desmit X., Lacroix L., Dulière V., Lancelot C., Gypens N., Ménesguen A. 2015. Ecosystem models as support to Eutrophication Management in the North Atlantic Ocean (EMoSEM). EMoSEM Final Report EU FP7 Seas-Era project 31/08/2015. Available from https://archimer.ifremer.fr/doc/00292/40301.
Dirnböck T., Kobler J., Kraus D., Grote R., Kiese R. 2016. Impacts of management and climate change on nitrate leaching in a forested karst area. J. Environ. Manage. 165: 243–252.
Eccles R., Zhang H., Hamilton D., Maxwell P. 2020. Trends in water quality in a subtropical australian river-estuary system: responses to damming, climate variability and wastewater discharges. J. Environ. Manage. 269: 110796.
El-Khoury A., Seidou O., Lapen D.R., Que Z., Mohammadian M., Sunohara M., Bahram D. 2015. Combined impacts of future climate and land use changes on discharge, nitrogen and phosphorus loads for a Canadian river basin. J. Environ. Manage. 151: 76–86.
Ervinia A., Huang J., Zhang Z. 2020. Nitrogen sources, processes, and associated impacts of climate and land-use changes in a coastal China watershed: Insights from the INCA-N model. Mar. Pollut. Bull. 159: 111502.
Fang Q.X., Malone R.W., Ma L., Jaynes D.B., Thorp K.R., Green T.R., Ahuja L.R. 2012. Modeling the effects of controlled drainage, n rate and weather on nitrate loss to subsurface drainage. Agr. Water Manage. 103: 150–161.
Field C., Barros V. 2015. 2014 Climate change 2014: impacts, adaptation, and vulnerability. Working Group II Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Statewide Agricultural Land Use Baseline 2015, 1(March). Retrieved from www.ipcc.ch.
Field C.B., Barros V.R. 2014. Ar5 climate change 2014: impacts, adaptation, and vulnerability: Working Group II contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Available from https://www.ipcc.ch/report/ar5/wg2/.
Fleck S., Ahrends B., Sutmöller J., Albert M., Evers J., Meesenburg H. 2017. Is biomass accumulation in forests an option to prevent climate change induced increases in nitrate concentrations in the north German lowland? Forests, 8: 219.
Forber K.J., Withers P.J.A., Ockenden M.C., Haygarth P.M. 2018. The phosphorus transfer continuum: a framework for exploring effects of climate change. Agric. Environ. Lett. 3: 180036.
Gao D., Bai E., Li M., Zhao C., Yu K., Hagedorn F. 2020. Responses of soil nitrogen and phosphorus cycling to drying and rewetting cycles: a meta-analysis. Soil Biol. Biochem. 148: 107896.
Glozier N.E., Elliott J.A., Holliday B., Yarotski J., Harker B. 2006. Water quality characteristics and trends in a small agricultural watershed: South Tobacco Creek, Manitoba, 1992-2001. Environment Canada, Ottawa, Ont.
Goudsmit G.H., Burchard H., Peeters F., Wüest A. 2002. Application of k-turbulence models to enclosed basins: the role of internal seiches. J. Geophys. Res.: Oceans, 107: 13–23.
Gray D., Granger R., Landine P. 1986. Modelling snowmelt infiltration and runoff in a prairie environment. Edited by D.L. Kane. Proc. Cold Regions Hydrol. Symp. AWRA, Bethesda, MD, pp. 427–438.
Gray D., Norum D.I., Dyck G.E. 1970. Densities of prairies snowpacks. pp. 24–30. Available from https://research-groups.usask.ca/hydrology/documents/pubs/papers/gray_et_al_1970_2.pdf.
Guo C., Zhu G., Qin B., Zhang Y., Zhu M., Xu H., 2019. Climate exerts a greater modulating effect on the phytoplankton community after 2007 in eutrophic Lake Taihu, China: evidence from 25-years of recordings. Ecol. Indic. 105: 82–91.
Haghnazari F., Karandish F., Darzi-Naftchali A., Šimůnek J. 2020. Dynamic assessment of the impacts of global warming on nitrate losses from a subsurface-drained rainfed-canola field. Agr. Water Manage. 242: 106420.
Han H., Yang J., Ma G., Liu Y., Zhang L., Chen S., Ma S. 2020. Effects of land-use and climate change on sediment and nutrient retention in Guizhou, China. Ecosyst. Health Sust. 6: 1810592.
Hansen N., Sharpley A.N., Lemunyon J.L. 2002. The fate and transport of phosphorus in agricultural systems. J. Soil Water Conserv. 57: 408–417.
He Y., Shi Y., Liang H., Hu K., Hou L. 2020. Soil water and nitrogen fluxes in response to climate change in a wheat–maize double cropping system. Agronomy, 10.
Holzworth D.P., Huth N.I., deVoil P.G., Zurcher E.J., Herrmann N.I., McLean G., 2014. APSIM – evolution towards a new generation of agricultural systems simulation. Environ. Model. Software, 62: 327–350.
Hou E., Chen C., Luo Y., Zhou G., Kuang Y., Zhang Y., 2018. Effects of climate on soil phosphorus cycle and availability in natural terrestrial ecosystems. Glob. Change Biol. 24: 3344–3356.
Huo S., Zhang H., Ma C., Xi B., Zhang J., He Z., 2019. Algae community response to climate change and nutrient loading recorded by sedimentary phytoplankton pigments in the changtan reservoir, China. J. Hydrol. 571: 311–321.
Hutson J.L., Wagenet R.J. 1995. An overview of LEACHM: a process based model of water and solute movement, transformations, plant uptake and chemical reactions in the unsaturated zone. In Chemical Equilibrium and Reaction Models, Vol. 42. Edited by R.H. Loeppert, A.P. Schwab, S. Goldberg. Soil Science Society of America, Inc., and American Society of Agronomy, Inc.pp. 409–442.
Isles P.D.F., Xu Y., Stockwell J.D., Schroth A.W. 2017. Climate-driven changes in energy and mass inputs systematically alter nutrient concentration and stoichiometry in deep and shallow regions of lake champlain. Biogeochemistry, 133: 201–217.
Jackson-Blake L.A., Sample J.E., Wade A.J., Helliwell R.C., Skeffington R.A. 2017. Are our dynamic water quality models too complex? a comparison of a new parsimonious phosphorus model, simplyp, and INCA-p. Water Resour. Res. 53: 5382–5399.
Jarsjö J., Törnqvist R., Su Y. 2017. Climate-driven change of nitrogen retention–attenuation near irrigated fields: multi-model projections for Central Asia. Environ. Earth Sci. 76: 117.
Jarvie H.P., Pallett D.W., Schäfer S.M., Macrae M.L., Bowes M.J., Farrand P., 2020. Biogeochemical and climate drivers of wetland phosphorus and nitrogen release: implications for nutrient legacies and eutrophication risk. J. Environ. Qual. 49: 1703–1716.
Jarvie H.P., Smith D.R., Norton L.R., Edwards F.K., Bowes M.J., King S.M., 2018. Phosphorus and nitrogen limitation and impairment of headwater streams relative to rivers in Great Britain: a national perspective on eutrophication. Sci. Total Environ. 621: 849–862.
Jeppesen E., Kronvang B., Olesen J.E., Audet J., Søndergaard M., Hoffmann C.C., 2011. Climate change effects on nitrogen loading from cultivated catchments in Europe: implications for nitrogen retention, ecological state of lakes and adaptation. Hydrobiologia, 663: 1–21.
Jiang Y., Zhuang Q., O’Donnell J.A. 2012. Modeling thermal dynamics of active layer soils and near-surface permafrost using a fully coupled water and heat transport model. J. Geophys. Res. Atmos. 117: 1–15.
Jin J., Tang C., Sale P. 2015. The impact of elevated carbon dioxide on the phosphorus nutrition of plants: a review. Ann. Botany, 116: 987–999.
Jin L., Whitehead P.G., Futter M.N., Lu Z. 2012. Modelling the impacts of climate change on flow and nitrate in the river thames: assessing potential adaptation strategies. Hydrol. Res. 43: 902–916.
Jong R.D., Qian B., Yang J.Y. 2008. Modelling nitrogen leaching in prince edward island under climate change scenarios. Can. J. Soil Sci. 88: 61–78.
Kalcic M.M., Muenich R.L., Basile S., Steiner A.L., Kirchhoff C., Scavia D. 2019. Climate change and nutrient loading in the western lake erie basin: warming can counteract a wetter future. Environ. Sci. Techn. 53: 7543–7550.
Kim D.H., Jang T., Hwang S. 2020. Evaluating impacts of climate change on hydrology and total nitrogen loads using coupled APEX-paddy and SWAT models. Paddy Water Environ. 18: 515–529.
Kopáček J., Kña J., Bičárová S., Brahney J., Navrátil T., Norton S.A., 2019. Climate change accelerates recovery of the Tatra mountain lakes from acidification and increases their nutrient and chlorophyll a concentrations. Aquat. Sci. 81: 70.
Lee K.H., Jeong H.J., Lee K., Franks P.J.S., Seong K.A., Lee S.Y., 2019. Effects of warming and eutrophication on coastal phytoplankton production. Harmful Algae, 81: 106–118.
Levine S.N., Lini A., Ostrofsky M.L., Bunting L., Burgess H., Leavitt P.R., 2012. The eutrophication of lake champlain’s northeastern arm: Insights from paleolimnological analyses. J. Great Lakes Res. 38: 35–48.
Li C., Zhang Y., Kharel G., Zou C.B. 2018. Impact of climate variability and landscape patterns on water budget and nutrient loads in a peri-urban watershed: a coupled analysis using process-based hydrological model and landscape indices. Environ. Manage. 61: 954–967.
Lindström G., Pers C., Rosberg J., Strömqvist J., Arheimer B. 2010. Development and testing of the hype (hydrological predictions for the environment) water quality model for different spatial scales. Hydrol. Res. 41: 295.
Liu H., Zhang M., Lin Z., Xu X. 2018. Spatial heterogeneity of the relationship between vegetation dynamics and climate change and their driving forces at multiple time scales in southwest China. Agr. Forest Meteorol. 256–257: 10–21.
Liu J., Baulch H.M., Macrae M.L., Wilson H.F., Elliott J.A., Bergström L., 2019. Agricultural water quality in cold climates: processes, drivers, management options, and research needs. J. Environ. Qual. 48: 792–802.
Liu K., Elliott J.A., Lobb D.A., Flaten D.N., Yarotski J. 2013. Critical factors affecting field-scale losses of nitrogen and phosphorus in spring snowmelt runoff in the Canadian prairies. J. Environ. Qual. 42: 484.
Liu W., Ciais P., Liu X., Yang H., Hoekstra A.Y., Tang Q., 2020. Global phosphorus losses from croplands under future precipitation scenarios. Environ. Sci. Techn. 54: 14761–14771.
Liu X., Zhu X., Pan Y., Li S., Liu Y., Ma Y. 2016. Agricultural drought monitoring: progress, challenges, and prospects. J. Geogr. Sci. 26: 750–767.
Loecke T.D., Burgin A.J., Riveros-Iregui D.A., Ward A.S., Thomas S.A., Davis C.A., Clair M.A.S. 2017. Weather whiplash in agricultural regions drives deterioration of water quality. Biogeochemistry, 133: 7–15.
Luo C., Li Z., Liu H., Li H., Wan R., Pan J., Chen X. 2020. Differences in the responses of flow and nutrient load to isolated and coupled future climate and land use changes. J. Environ. Manage. 256: 109918.
Ma L., Ahuja L.R., Nolan B.T., Malone R.W., Trout T.J., Qi Z. 2012. Root zone water quality model (RZWQM2): model use, calibration, and validation. Trans. ASABE (Am. Soc. Ag. Eng.) 55: 1425–1446.
MacDonald J., Pomeroy J. 2007. Gauge undercatch of two common snowfall gauges in a prairie environment. In Proceedings of the 64th Eastern Snow Conference. St. John’s, Newfoundland, Canada. p. 119–124. Available from https://www.semanticscholar.org/paper/Gauge-Undercatch-of-Two-Common-Snowfall-Gauges-in-a-Macdonald-Pomeroy/2293846f6f6df20f7bbc7c2b2fd90a8bd081e39b.
Macrae M.L., English M.C., Schiff S.L., Stone M. 2007. Capturing temporal variability for estimates of annual hydrochemical export from a first-order agricultural catchment in Southern Ontario, Canada. Hydrol. Process. 21(13): 1651–1663.
Macrae M.L., English M.C., Schiff S.L., Stone M. 2010. Influence of antecedent hydrologic conditions on patterns of hydrochemical export from a first-order agricultural watershed in Southern Ontario, Canada. J. Hydrol. 389: 101–110.
Maraseni T., Kodur S. 2019. Improved prediction of farm nitrous oxide emission through an understanding of the interaction among climate extremes, soil nitrogen dynamics and irrigation water. J. Environ. Manage. 248: 109278.
Messiga, A.J., Ziadi, N., Morel C., Parent L.E. 2010. Soil phosphorus availability in no-till versus conventional tillage following freezing and thawing cycles. Can. J. Soil Sci. 90: 419–428.
Messina N.J., Couture R.M., Norton S.A., Birkel S.D., Amirbahman A. 2020. Modeling response of water quality parameters to land-use and climate change in a temperate, mesotrophic lake. Sci. Total Environ. 713: 136549.
Minaudo C., Abonyi A., Leitño M., Lançon A.M., Floury M., Descy J.P., Moatar F. 2021. Long-term impacts of nutrient control, climate change, and invasive clams on phytoplankton and cyanobacteria biomass in a large temperate river. Sci. Total Environ. 756: 144074.
Morales I., Cooper J., Amador J.A., Boving T.B. 2016. Modeling nitrogen losses in conventional and advanced soil-based onsite wastewater treatment systems under current and changing climate conditions. PLOS One, 11: e0158292.
Neely R., Baker J. 1989. Nitrogen and phosphorus dynamics and the fate of agricultural runoff. Northern Prairie Wetlands, Iowa State University Press, Ames, Iowa. pp. 92–131. Available from https://eurekamag.com/research/001/894/001894976.ph.
Nguyen H.H., Recknagel F., Meyer W. 2019. Effects of projected urbanization and climate change on flow and nutrient loads of a Mediterranean catchment in South Australia. Ecohydrol. Hydrobiol. 19: 279–288.
Nicholaichuk W. 1967. Comparative watershed studies in southern saskatchewan. Trans. ASAE (Am. Soc. Ag. Eng.) 10: 502–504. Available from https://elibrary.asabe.org/abstract.asp??JID=3&AID=39713&CID=t1967&v=10&i=4&T=1.
Norlin L., Byström P., Karlsson J., Johansson M., Liess A. 2016. Climate change will alter amphibian-mediated nutrient pathways: evidence from rana temporaria tadpoles in experimental ponds. Freshwater Biol. 61: 472–485.
Ockenden M.C., Deasy C.E., Benskin C., Beven K.J., Burke S., Collins A.L., 2016. Changing climate and nutrient transfers: evidence from high temporal resolution concentration-flow dynamics in headwater catchments. Sci. Total Environ. 548–549: 325–339.
Ockenden M.C., Hollaway M.J., Beven K.J., Collins A.L., Evans R., Falloon P.D., 2017. Major agricultural changes required to mitigate phosphorus losses under climate change. Nat. Commun. 8: 161.
Onishi T., Yoshino J., Hiramatsu K., Somura H. 2020. Developing a hydro-chemical model of ise bay watersheds and the evaluation of climate change impacts on discharge and nitrate-nitrogen loads. Limnology, 21: 465–486.
Paerl H.W., Otten T.G., Kudela R. 2018. Mitigating the expansion of harmful algal blooms across the freshwater-to-marine continuum. Environ. Sci. Techn. 52: 5519–5529.
Paradis D., Ballard J.M., Lefebvre R., Savard M.M. 2018. Multi-scale nitrate transport in a sandstone aquifer system under intensive agriculture. Hydrogeol. J. 26: 511–531.
Paradis D., Vigneault H., Lefebvre R., Savard M.M., Ballard J.M., Qian B. 2016. Groundwater nitrate concentration evolution under climate change and agricultural adaptation scenarios: Prince Edward island, Canada. Earth Syst. Dynam. 7: 183–202.
Pomeroy J.W., Gray D.M., Brown T., Hedstrom N.R., Quinton W.L., Granger R.J., Carey S.K. 2007. The cold regions hydrological model: a platform for basing process representation and model structure on physical evidence. Hydrol. Process. 21: 2650–2667.
Pomeroy J.W., Jones H.G., Tranter M., Lilbæk G.R.O. 2006. Hydrochemical processes in snow-covered basins. Hydrochemical processes in snow-covered basins, Part 14, Snow and Glacier Hydrology, No. 163. In Encyclopedia of Hydrological Sciences. Edited by M.G. Anderson, J.J. McDonnell. Wiley.
Radbourne A.D., Ryves D.B., Madgwick G., Anderson N.J. 2020. The influence of climate change on the restoration trajectory of a nutrient-rich deep lake. Ecosystems, 23: 859–872.
Raimonet M., Thieu V., Silvestre M., Oudin L., Rabouille C., Vautard R., Garnier J. 2018. Landward perspective of Coastal Eutrophication potential under future climate change: the Seine River Case (France). Front. Marine Sci. 5: 136.
Robertson G.P., Vitousek P.M. 2009. Nitrogen in agriculture: balancing the cost of an essential resource. Ann. Rev. Environ. Resour. 34: 97–125.
Rojas-Downing M.M., Nejadhashemi A.P., Harrigan T., Woznicki S.A. 2017. Climate change and livestock: Impacts, adaptation, and mitigation. Climate Risk Manage. 16: 145–163.
Rood S.B., Pan J., Gill K.M., Franks C.G., Samuelson G.M., Shepherd A. 2008. Declining summer flows of rocky mountain rivers: changing seasonal hydrology and probable impacts on floodplain forests. J. Hydrol. 349: 397–410.
Rose L.A., Yu Z., Bain D.J., Elliott E.M. 2019. High resolution, extreme isotopic variability of precipitation nitrate. Atmos. Environ. 207: 63–74.
Rozemeijer J., Noordhuis R., Ouwerkerk K., Pires M.D., Blauw A., Hooijboer A., van Oldenborgh G.J. 2021. Climate variability effects on eutrophication of groundwater, lakes, rivers, and coastal waters in the Netherlands. Sci. Total Environ. 771: 145366.
Saber A., James D.E., Hannoun I.A. 2020. Effects of lake water level fluctuation due to drought and extreme winter precipitation on mixing and water quality of an alpine lake, case study: Lake Arrowhead, California. Sci. Total Environ. 714: 136762.
Saleem S., Levison J., Parker B., Martin R., Persaud E. 2020. Impacts of climate change and different crop rotation scenarios on groundwater nitrate concentrations in a sandy aquifer. Sustainability, 12: 1153.
Saloranta T.M., Andersen T. 2007. Mylake—a multi-year lake simulation model code suitable for uncertainty and sensitivity analysis simulations. Ecol. Model. 207: 45–60.
Santy S., Mujumdar P., Bala G. 2020. Potential impacts of climate and land use change on the water quality of Ganga River around the Industrialized Kanpur Region. Sci. Rep. 10: 9107.
Schindler D.W., Hecky R.E., McCullough G.K. 2012. The rapid eutrophication of Lake Winnipeg: greening under global change. J. Great Lakes Res. 38: 6–13.
Schlingmann M., Tobler U., Berauer B., Garcia-Franco N., Wilfahrt P., Wiesmeier M., 2020. Intensive slurry management and climate change promote nitrogen mining from organic matter-rich montane grassland soils. Plant Soil, 456: 81–98.
Schwefel R., Müller B., Boisgontier H., Wüest A. 2019. Global warming affects nutrient upwelling in deep lakes. Aquat. Sci. 81: 50.
Shalby A., Elshemy M., Zeidan B.A. 2020. Assessment of climate change impacts on water quality parameters of Lake Burullus, Egypt. Environ. Sci. Poll. Res. 27: 32157–32178.
Shi X., Mao J., Thornton P.E., Hoffman F.M., Post W.M. 2011. The impact of climate, CO2, nitrogen deposition and land use change on simulated contemporary global river flow. Geophys. Res. Lett. 38: L08704. doi.
Simunek J., Sejna M., van Genuchten M.T. 2006. The HYDRUS Software Package for Simulating Two- and Three-Dimensional Movement of Water, Heat, and Multiple Solutes in Variably-Saturated Media, User Manual, Version 1.0, PC Progress, Prague, Czech Republic. Available from https://www.pc-progress.com/downloads/Pgm_Hydrus3D/HYDRUS3D%20Technical%20Manual.pdf
Simunek J., van Genuchten M.T., Sejna M. 2008. Development and applications of the HYDRUS and STANMOD software packages and related codes. Vadose Zone J. 7: 587–600.
Skuras D., Wade A., Psaltopoulos D., Whitehead P., Kontolainou A., Erlandsson M. 2014. An interdisciplinary modelling approach assessing the cost-effectiveness of agri-environmental measures on reducing nutrient concentration to wfd thresholds under climate change: the case of the Louros catchment. Oper. Res. 14: 205–224.
Sperotto A., Molina J.L., Torresan S., Critto A., Pulido-Velazquez M., Marcomini A. 2019. A Bayesian networks approach for the assessment of climate change impacts on nutrients loading. Environ. Sci. Policy, 100: 21–36.
Steglich E.M., Williams J.R. 2008. Agricultural Policy/Environmental Extender Model User’s Manual Version 0604. BREC Report #2008-16.Blackland Research and Extension Center. Available from https://epicapex.tamu.edu/media/ujzly2oc/the-apex-user-manual-7-8-10.pdf
Suddick E.C., Whitney P., Townsend A.R., Davidson E.A. 2013. The role of nitrogen in climate change and the impacts of nitrogen–climate interactions in the United States: foreword to thematic issue. Biogeochemistry 114: 1–10.
Terrer C., Jackson R.B., Prentice I.C., Keenan T.F., Kaiser C., Vicca S., 2019. Nitrogen and phosphorus constrain the CO2 fertilization of global plant biomass. Nat. Clim. Change, 9: 684–689.
Torres-Rojas D., Hestrin R., Solomon D., Gillespie A.W., Dynes J.J., Regier T.Z., Lehmann J. 2020. Nitrogen speciation and transformations in fire-derived organic matter. Geochim. Cosmochim. Acta, 276: 170–185.
Vaighan A.A., Talebbeydokhti N., Bavani A.M., Whitehead P. 2018. Modeling impacts of climate and land use change on streamflow, nitrate, and ammonium in the Kor River, southwest of Iran. J. Water Clim. Change, 10: 818–834.
Verspagen J.M.H., de Waal D.B.V., Finke J.F., Visser P.M., Donk E.V., Huisman J. 2014. Rising CO2 levels will intensify phytoplankton blooms in Eutrophic and Hypertrophic Lakes. PLOS One, 9: e104325.
Wade A., Skeffington R., Couture R.M., Erlandsson M., Groot S., Halliday S., 2018. A north-south divide in Europe: the future freshwater eutrophication response to land use and climate interaction. In Proceedings from the 20th EGU General Assembly, EGU2018, held 4–13 April 2018 in Vienna, Austria, p. 6328. Available from https://ui.adsabs.harvard.edu/abs/2018EGUGA.20.6328W/abstract
Walters W.W., Fang H., Michalski G. 2018. Summertime diurnal variations in the isotopic composition of atmospheric nitrogen dioxide at a small midwestern United States city. Atmos. Environ. 179: 1–11.
Wang L., Flanagan D.C., Wang Z., Cherkauer K.A. 2018. Climate change impacts on nutrient losses of two watersheds in the great lakes region. Water. 10: 442. doi.
Wang N., Wang C., Dannenmann M., Butterbach-Bahl K., Huang J. 2020. Response of microbial community and net nitrogen turnover to modify climate change in alpine meadow. Appl. Soil Ecol. 152: 103553.
Whitehead P.G., Sarkar S., Jin L., Futter M.N., Caesar J., Barbour E., 2015. Dynamic modeling of the Ganga river system: impacts of future climate and socio-economic change on flows and nitrogen fluxes in India and Bangladesh. Environ. Sci.: Process. Impact. 17: 1082–1097.
Whitehead P.G., Wilby R.L., Battarbee R.W., Kernan M., Wade A.J. 2009. A review of the potential impacts of climate change on surface water quality. Hydrol. Sci. J. 54: 101–123.
Whitehead P.G., Wilby R.L., Butterfield D., Wade A.J. 2006. Impacts of climate change on in-stream nitrogen in a lowland chalk stream: an appraisal of adaptation strategies. Sci. Total Environ. 365: 260–273.
Whitehead P.G., Wilson E.J., Butterfield D., Seed K. 1998. A semi-distributed integrated flow and nitrogen model for multiple source assessment in catchments (INCA): Part II - application to large river basins in south Wales and eastern England. Sci. Total Environ. 210–211: 559–583.
Williams G.P., Obregon O., Nelson E.J., Miller W., Borup M.B., Buahin C. 2014. Sensitivity of water quality indicators in a large tropical reservoir to selected climate and land-use changes. Lakes Reservoirs: Sci. Pol. Manage. Sust. Use 19: 293–305.
Williams J.R., Renard K.G., Dyke P.T. 1983. EPIC: a new method for assessing erosion’s effect on soil productivity. J. Soil Water Conserv. 38: 381–383.
Wilson H., Elliott J., Macrae M., Glenn A. 2019a. Near-surface soils as a source of phosphorus in snowmelt runoff from cropland. J. Environ. Qual. 48: 921–930.
Wilson H.F., Casson N.J., Glenn A.J., Badiou P., Boychuk L. 2019b. Landscape controls on nutrient export during snowmelt and an extreme rainfall runoff event in northern agricultural watersheds. J. Environ. Qual. 48: 841–849.
Wu J., Malmström M.E. 2015. Nutrient loadings from urban catchments under climate change scenarios: case studies in Stockholm, Sweden. Sci. Total Environ. 518–519: 393–406.
Wu Y., Liu S., Gallant A.L. 2012. Predicting impacts of increased CO2 and climate change on the water cycle and water quality in the semiarid James River Basin of the Midwestern USA. Sci. Total Environ. 430: 150–160.
Xu X., Liu H., Jiao F., Ren Y., Gong H., Lin Z., Huang C. 2020. Influence of climate change and human activity on total nitrogen and total phosphorus: a case study of Lake Taihu, China. Lake Reserv. Manage. 36: 186–202.
Yang J.Y., Jong R.D., Drury C.F., Huffman E.C., Kirkwood V., Yang X.M. 2006. Development of a canadian agricultural nitrogen budget (canb v2.0) model and the evaluation of various policy scenarios. Can. J. Soil Sci. 87: 153–165.
Yang Q., Zhang X., Almendinger J.E., Huang M., Chen X., Leng G., 2019. Climate change will pose challenges to water quality management in the st. Croix River basin. Environ. Poll. 251: 302–311.
Ye L., Grimm N.B. 2013. Modelling potential impacts of climate change on water and nitrate export from a mid-sized, semiarid watershed in the US southwest. Clim. Change, 120: 419–431.
Zhang J., Zhi M. 2020. Effects of basin nutrient discharge variations coupled with climate change on water quality in Lake Erhai, China. Environm. Sci. Poll. Res. 27: 43700–43710.
Zhang R., Wang H., Fu Q., Rasch P.J., Wang X. 2019. Unraveling driving forces explaining significant reduction in satellite-inferred arctic surface albedo since the 1980s. Proc. Natl Acad. Sci. 116: 23947–23953.
Zhang S., Hou X., Wu C., Zhang C. 2020. Impacts of climate and planting structure changes on watershed runoff and nitrogen and phosphorus loss. Sci. Total Environ. 706: 134489.
Zhao S., Zhang B., Sun X., Yang L. 2021. Hot spots and hot moments of nitrogen removal from Hyporheic and Riparian zones: a review. Sci. Total Environ. 762: 144168.
Zheng W., Wang S., Tan K., Lei Y. 2020. Nitrate accumulation and leaching potential is controlled by land-use and extreme precipitation in a headwater catchment in the North China plain. Sci. Total Environ. 707: 136168.

Information & Authors

Information

Published In

cover image Environmental Reviews
Environmental Reviews
Volume 31Number 1March 2023
Pages: 4 - 25

History

Received: 8 October 2021
Accepted: 15 June 2022
Accepted manuscript online: 21 July 2022
Version of record online: 8 September 2022
Corrected: 14 October 2022

Notes

A correction was made to the e-First version of this paper on 14 October 2022 prior to the final issue publication. The current online and print versions are identical and both contain the correction.

Data Availability Statement

The webcrawler used in this research can be downloaded from https://github.com/DiogoCostaPT/webcrawler. The papers used in the review have been identified by the webcrawler and are indexed in the SCOPUS database.

Permissions

Request permissions for this article.

Key Words

  1. nutrients
  2. nutrient pollution
  3. hydrology
  4. global analysis
  5. climate change
  6. review

Mots-clés

  1. Nutriments
  2. pollution par les nutriments
  3. hydrologie
  4. analyse globale
  5. changement climatique
  6. synthèse

Authors

Affiliations

Environment and Climate Change Canada, Saskatoon, SK S7N 3H5, Canada
University of Saskatchewan, Saskatoon, SK S7N 5C8, Canada
Caleb Sutter
University of Saskatchewan, Saskatoon, SK S7N 5C8, Canada
Anita Shepherd
University of Aberdeen, Institute of Biological and Environmental Sciences, Aberdeen, AB24 3UU, UK
Helen Jarvie
University of Waterloo, Waterloo, ON N2L 3G1, Canada
Agriculture and Agri-Food Canada, Brandon, MB R7A 5Y3, Canada
Jane Elliott
Environment and Climate Change Canada, Saskatoon, SK S7N 3H5, Canada
University of Saskatchewan, Saskatoon, SK S7N 5C8, Canada
University of Saskatchewan, Saskatoon, SK S7N 5C8, Canada
Merrin Macrae
University of Waterloo, Waterloo, ON N2L 3G1, Canada

Competing Interests

The authors declare there are no competing interests associated with this work.

Metrics & Citations

Metrics

Other Metrics

Citations

Cite As

Export Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

1. Long-term trends in water quality and C-Q relationships reveal complex interactions between changing land uses and climate
2. Nutrient transport from the Ganga–Brahmaputra–Meghna River system to the Bay of Bengal: past and future trends
3. An integrated computational and graphical approach for evaluating the geochemistry and health risks of nitrate-contaminated water for six age groups
4. Integrating Remote Sensing and Machine Learning for Dynamic Monitoring of Eutrophication in River Systems: A Case Study of Barato River, Japan
5. Global spatiotemporal characterization factors for freshwater eutrophication under climate change scenarios
6. Trends in extreme rainfall over the past 55 years suggest springtime subhourly rainfall extremes have intensified in Mahantango Creek, Pennsylvania
7. How Do Satellite Precipitation Products Affect Water Quality Simulations? A Comparative Analysis of Rainfall Datasets for River Flow and Riverine Nitrate Load in an Agricultural Watershed
8. Review of Climate Change Impacts on Water Quantity and Quality in the Murray–Darling Basin, Australia
9. Climate change impacts on eutrophication in the Po River (Italy): Temperature-mediated reduction in nitrogen export but no effect on phosphorus
10. Seasonal Variability and Hydrological Patterns Influence the Long-Term Trends of Nutrient Loads in the River Po
11. Spatial variability of soil physicochemical properties under different land uses impacted by erosion on karst hillslopes in Southwest China
12. Comprehensive effects of climate, land use/cover and management practices on runoff and nutrient variations in a rapidly urbanizing watershed
13. Nutrient and Soil Moisture Dynamics Under Changing Climate
14. Developing a tile drainage module for the Cold Regions Hydrological Model: lessons from a farm in southern Ontario, Canada
15. Looking back to move forward: Restoring vegetated canals to meet missing Water Framework Directive goals in agricultural basins

View Options

Login options

Check if you access through your login credentials or your institution to get full access on this article.

Subscribe

Click on the button below to subscribe to Environmental Reviews

Purchase options

Purchase this article to get full access to it.

Restore your content access

Enter your email address to restore your content access:

Note: This functionality works only for purchases done as a guest. If you already have an account, log in to access the content to which you are entitled.

View options

PDF

View PDF

Full Text

View Full Text

Media

Tables

Media

Share Options

Share

Share the article link

Share on social media