Cookies Notification

We use cookies to improve your website experience. To learn about our use of cookies and how you can manage your cookie settings, please see our Cookie Policy.
×

Identification of enhancers that drive the spatially restricted expression of Vsx1 and Rx in the outer proliferation center of the developing Drosophila optic lobe

Publication: Genome
15 October 2020

Abstract

Combinatorial spatial and temporal patterning of stem cells is a powerful mechanism for the generation of neural diversity in insect and vertebrate nervous systems. In the developing Drosophila medulla, the neural stem cells of the outer proliferation center (OPC) are spatially patterned by the mutually exclusive expression of three homeobox transcription factors: Vsx1 in the center of the OPC crescent (cOPC), Optix in the main arms (mOPC), and Rx in the posterior tips (pOPC). These spatial factors act together with a temporal cascade of transcription factors in OPC neuroblasts to specify the greater than 80 medulla cell types. Here, we identify the enhancers that are sufficient to drive the spatially restricted expression of the Vsx1 and Rx genes in the OPC. We show that removal of the cOPC enhancer in the Muddled inversion mutant leads to the loss of Vsx1 expression in the cOPC. Analysis of the evolutionarily conserved sequences within these enhancers suggests that direct repression by Optix may restrict the expression of Vsx1 and Rx to the cOPC and pOPC, respectively.

Résumé

Le déploiement combinatoire, à la fois spatial et temporel, des cellules souches est un mécanisme puissant pour donner naissance à la diversité neurale chez les systèmes nerveux d’insectes et de vertébrés. Au sein de la medulla en développement chez Drosophila, les cellules souches neurales de la zone de prolifération externe (OPC pour « outer proliferation centre ») se développent grâce à l’expression mutuellement exclusive de trois facteurs de transcription de la famille homéoboîte : Vsx1 au centre du croissant OPC (cOPC), Optix dans les bras (mOPC) et Rx dans les extrémités postérieures (pOPC). Ces facteurs spatiaux travaillent ensemble avec une cascade temporelle de facteurs de transcription dans les neuroblastes de l’OPC pour spécifier plus de 80 types de cellules médullaires. Dans ce travail, les auteurs identifient les amplificateurs qui opèrent l’expression spatialement restreinte des gènes Vsx1 et Rx dans l’OPC. Ils montrent que la délétion de l’amplificateur cOPC qui survient chez l’inversion Muddled entraîne la perte d’expression de Vsx1 dans l’OPC. Une analyse des séquences conservées au cours de l’évolution au sein de ces amplificateurs suggère que la répression directe d’Optrix pourrait être responsable de l’expression de Vsx1 et de Rx dans le cOPC et le pOPC, respectivement.

Get full access to this article

View all available purchase options and get full access to this article.

References

Anderson A.M., Weasner B.M., Weasner B.P., and Kumar J.P. 2012. Dual transcriptional activities of SIX proteins define their roles in normal and ectopic eye development. Development, 139: 991–1000.
Apitz H. and Salecker I. 2014. A challenge of numbers and diversity: neurogenesis in the Drosophila optic lobe. J. Neurogenet. 28: 233–249.
Ashburner, M. 1989. Drosophila: a laboratory handbook. Vol. 1. pp. 1331.
Bertet C., Li X., Erclik T., Cavey M., Wells B., and Desplan C. 2014. Temporal patterning of neuroblasts controls notch-mediated cell survival through regulation of hid or reaper. Cell, 158: 1173–1186.
Chang T., Mazotta J., Dumstrei K., Dumitrescu A., and Hartenstein V. 2001. Dpp and Hh signaling in the Drosophila embryonic eye field. Development, 128: 4691–4704.
Contreras E.G., Sierralta J., and Oliva C. 2019. Novel strategies for the generation of neuronal diversity: lessons from the fly visual system. Front. Mol. Neurosci. 12: 140.
Davis R.J., Tavsanli B.C., Dittrich C., Walldorf U., and Mardon G. 2003. Drosophila retinal homeobox (drx) is not required for establishment of the visual system, but is required for brain and clypeus development. Dev. Biol. 259: 272–287.
Dessaud E., McMahon A.P., and Briscoe J. 2008. Pattern formation in the vertebrate neural tube: a sonic hedgehog morphogen-regulated transcriptional network. Development, 135: 2489–2503.
Egger B., Boone J.Q., Stevens N.R., Brand A.H., and Doe C.Q. 2007. Regulation of spindle orientation and neural stem cell fate in the Drosophila optic lobe. Neural Dev. 2: 1.
Egger B., Gold K.S., and Brand A.H. 2010. Notch regulates the switch from symmetric to asymmetric neural stem cell division in the Drosophila optic lobe. Development, 137: 2981–2987.
Erclik T., Hartenstein V., Lipshitz H.D., and McInnes R.R. 2008. Conserved role of the Vsx genes supports a monophyletic origin for bilaterian visual systems. Curr. Biol. 18: 1278–1287.
Erclik T., Li X., Courgeon M., Bertet C., Chen Z., Baumert R., et al. 2017. Integration of temporal and spatial patterning generates neural diversity. Nature, 541: 365–370.
Evans C.J., Olson J.M., Ngo K.T., Kim E., Lee N.E., Kuoy E., et al. 2009. G-TRACE: rapid Gal4-based cell lineage analysis in Drosophila. Nat. Methods, 6: 603–605.
Fischbach K.-F. and Dittrich A.P.M. 1989. The optic lobe of Drosophila melanogaster. I. A Golgi analysis of wild-type structure. Cell Tissue Res. 258: 441–475.
Gold K.S. and Brand A.H. 2014. Optix defines a neuroepithelial compartment in the optic lobe of the Drosophila brain. Neural Dev. 9: 18.
Hofbauer A. and Campos-Ortega J.A. 1990. Proliferation pattern and early differentiation of the optic lobes in Drosophila melanogaster. Roux’s Arch. Dev. Biol. 198: 264–274.
Kaphingst K. and Kunes S. 1994. Pattern formation in the visual centers of the Drosophila brain: wingless acts via decapentaplegic to specify the dorsoventral axis. Cell, 78: 437–448.
Li X., Erclik T., Bertet C., Chen Z., Voutev R., Venkatesh S., et al. 2013. Temporal patterning of Drosophila medulla neuroblasts controls neural fates. Nature, 498: 456–462.
Morante J. and Desplan C. 2008. The color-vision circuit in the medulla of Drosophila. Curr. Biol. 18: 553–565.
Nériec N. and Desplan C. 2016. From the eye to the brain: development of the Drosophila visual system. Curr. Top. Dev. Biol. 116: 247–271.
Ready D.F., Hanson T.E., and Benzer S. 1976. Development of the Drosophila retina, a neurocrystalline lattice. Dev. Biol. 53: 217–240.
Reiter C., Schimansky T., Nie Z., and Fischbach K.F. 1996. Reorganization of membrane contacts prior to apoptosis in the Drosophila retina: The role of the IrreC-rst protein. Development, 122: 1931–1940.
Rowan S. and Cepko C.L. 2005. A POU factor binding site upstream of the Chx10 homeobox gene is required for Chx10 expression in subsets of retinal progenitor cells and bipolar cells. Dev. Biol. 281: 240–255.
Suzuki T., Kaido M., Takayama R., and Sato M. 2013. A temporal mechanism that produces neuronal diversity in the Drosophila visual center. Dev. Biol. 380: 12–24.
Thummel C.S. and Pirrotta V. 1992. New pCaSpeR P element vectors. Dros. Info. Serv. 71: 150.

Supplementary Material

Supplementary data (gen-2020-0034suppla.xlsx)

Information & Authors

Information

Published In

cover image Genome
Genome
Volume 64Number 2February 2021
Pages: 109 - 117

Article versions

History

Received: 19 March 2020
Accepted: 5 June 2020
Version of record online: 15 October 2020

Notes

This article is part of the special issue entitled “CanFly XV 2019”. A collection of invited papers from the Canadian Drosophila Research Conference, Toronto, Ontario, 9–13 June 2019.

Permissions

Request permissions for this article.

Key Words

  1. Drosophila
  2. optic lobe
  3. enhancer
  4. Vsx1
  5. Rx

Mots-clés

  1. Drosophila
  2. lobe optique
  3. amplificateur
  4. Vsx1
  5. Rx

Authors

Affiliations

Ishrat Maliha Islam*
Departments of Biology and Cell & Systems Biology, University of Toronto – Mississauga, Mississauga, ON., Canada.
June Ng*
Department of Biology, New York University, New York, USA.
Priscilla Valentino
Departments of Biology and Cell & Systems Biology, University of Toronto – Mississauga, Mississauga, ON., Canada.
Departments of Biology and Cell & Systems Biology, University of Toronto – Mississauga, Mississauga, ON., Canada.

Notes

*
These authors contributed equally to this work.
Copyright remains with the author(s) or their institution(s). Permission for reuse (free in most cases) can be obtained from copyright.com.

Metrics & Citations

Metrics

Other Metrics

Citations

Cite As

Export Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

1. Morphological and functional convergence of visual projection neurons from diverse neurogenic origins in Drosophila
2. Morphological and functional convergence of visual projections neurons from diverse neurogenic origins in Drosophila
3. Spalt and disco define the dorsal-ventral neuroepithelial compartments of the developing Drosophila medulla
4. Functional analysis of enhancer elements regulating the expression of the Drosophila homeodomain transcription factor DRx by gene targeting

View Options

Login options

Check if you access through your login credentials or your institution to get full access on this article.

Subscribe

Click on the button below to subscribe to Genome

Purchase options

Purchase this article to get full access to it.

Restore your content access

Enter your email address to restore your content access:

Note: This functionality works only for purchases done as a guest. If you already have an account, log in to access the content to which you are entitled.

View options

PDF

View PDF

Full Text

View Full Text

Figures

Tables

Media

Share Options

Share

Share the article link

Share on social media