Cookies Notification

We use cookies to improve your website experience. To learn about our use of cookies and how you can manage your cookie settings, please see our Cookie Policy.
×

Differential DNA methylation analysis reveals key genes in Chinese Qingyu and Landrace pigs

Publication: Genome
9 July 2021

Abstract

The Chinese Qingyu pig is a typical domestic fatty pig breed and an invaluable indigenous genetic resource in China. Compared with the Landrace pig, the Qingyu pig has unique meat characteristics, including muscle development, intramuscular fat, and other meat quality traits. At present, few studies have explored epigenetic differences due to DNA methylation between the Qingyu pig and the Landrace pig. In this study, 30 Qingyu pigs and 31 Landrace pigs were subjected to reduced representation bisulfite sequencing (RRBS). Genome-wide differential DNA methylation analysis was conducted. Six genomic regions, including regions on Sus scrofa chromosome (SSC) 1: 266.09–274.23 Mb, SSC5: 0.88–10.68 Mb, SSC8: 41.23–48.51 Mb, SSC12: 45.43–54.38 Mb, SSC13: 202.15–207.95 Mb, and SSC14: 126.43–139.85 Mb, were regarded as key regions that may be associated with phenotypic differences between the Qingyu pig and the Landrace pig. Furthermore, according to further analysis, five differentially methylated genes (ADCY1, FUBP3, GRIN2B, KIT, and PIK3R6) were identified as key candidate genes that might be associated with meat characteristics. Our findings provide new insights into the differences in DNA methylation between the Qingyu pig and the Landrace pig. These results enrich the epigenetic research of the Chinese Qingyu pig.

Résumé

La race porcine chinoise Qingyu est une race domestique typique à forte teneur en gras et constitue une précieuse ressource génétique indigène en Chine. Comparé au porc Landrace, le Qingyu présente des caractéristiques uniques au niveau de sa viande, dont le développement du muscle, le gras intramusculaire et d’autres aspects de la qualité de la viande. À ce jour, peu d’études ont exploré les différences épigénétiques due à la méthylation de l’ADN entre les races Qingyu et Landrace. Dans ce travail, 30 porcs Qingyu et 31 porcs Landrace ont été examinés au moyen de séquençage au bisulfite d’une représentation réduite du génome (RRBS). Une analyse pangénomique de la méthylation différentielle a été réalisée. Six régions du génome du Sus scrofa (SSC1 : 266.09–274.23 Mb, SSC5 : 0.88–10.68 Mb, SSC8 : 41.23–48.51 Mb, SSC12 : 45.43–54.38 Mb, SSC13 : 202.15–207.95 Mb et SSC14 : 126.43–139.85 Mb) ont été trouvées comme étant des régions clés possiblement associées aux différences phénotypiques entre les races Qingyu et Landrace. De plus, sur la base d’analyses plus approfondies, cinq gènes affichant une méthylation différentielle (ADCY1, FUBP3, GRIN2B, KIT, PIK3R6) sont présentés comme étant des gènes clés associés aux caractéristiques de la viande. Ces résultats apportent un nouvel éclairage sur les différences de méthylation de l’ADN entre les races Qingyu et Landrace. Ces travaux viennent alimenter la recherche épigénétique sur les porcs chinois Qingyu. [Traduit par la Rédaction]

Get full access to this article

View all available purchase options and get full access to this article.

References

Bergman Y. and Cedar H. 2013. DNA methylation dynamics in health and disease. Nat. Struct. Mol. Biol. 20(3): 274–281.
Bird A. 2002. DNA methylation patterns and epigenetic memory. Genes Dev. 16(1): 6–21.
Bolger A.M., Lohse M., and Usadel B. 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics, 30(15): 2114–2120.
Carrió E. and Suelves M. 2015. DNA methylation dynamics in muscle development and disease. Front. Aging Neurosci. 7: 19.
Chen J., Wu F., Shi Y., Yang D., Xu M., Lai Y., and Liu Y. 2019. Identification of key candidate genes involved in melanoma metastasis. Mol. Med. Rep. 20(2): 903–914.
Choi M., Lee J., Le M.T., Nguyen D.T., Park S., Soundrarajan N., et al. 2015. Genome-wide analysis of DNA methylation in pigs using reduced representation bisulfite sequencing. DNA Res. 22(5): 343–355.
Corbett R.J., Te Pas M.F.W., van den Brand H., Groenen M.A.M., Crooijmans R., Ernst C.W., and Madsen O. 2020. Genome-wide assessment of DNA methylation in chicken cardiac tissue exposed to different incubation temperatures and CO(2) levels. Front Genet. 11: 558189.
Doherty R. and Couldrey C. 2014. Exploring genome wide bisulfite sequencing for DNA methylation analysis in livestock: a technical assessment. Front. Genet. 5: 126.
Dor Y. and Cedar H. 2018. Principles of DNA methylation and their implications for biology and medicine. The Lancet, 392(10149): 777–786.
Fan Y., Liang Y., Deng K., Zhang Z., Zhang G., Zhang Y., and Wang F. 2020. Analysis of DNA methylation profiles during sheep skeletal muscle development using whole-genome bisulfite sequencing. BMC Genomics, 21(1): 327.
Fang X., Zhao Z., Yu H., Li G., Jiang P., Yang Y., et al. 2017. Comparative genome-wide methylation analysis of longissimus dorsi muscles between Japanese black (Wagyu) and Chinese Red Steppes cattle. PLoS ONE, 12(8): e0182492.
Feeney A., Nilsson E., and Skinner M.K. 2014. Epigenetics and transgenerational inheritance in domesticated farm animals. J. Anim. Sci. Biotechnol. 5(1): 48.
Felix K. and Andrews S.R. 2011. Bismark: a flexible aligner and methylation caller for Bisulfite-Seq applications. Bioinformatics, 27(11): 1571–1572.
Gan M., Shen L., Fan Y., Guo Z., Liu B., Chen L., et al. 2019. High altitude adaptability and meat quality in Tibetan pigs: a reference for local pork processing and genetic improvement. Animals (Basel), 9(12): 1080.
Gartler S.M. and Riggs A.D. 1983. Mammalian X-chromosome inactivation. Annu. Rev. Genet. 17(1): 155–190.
González-Recio O. 2011. Epigenetics: a new challenge in the post-genomic era of livestock. Front Genet. 2: 106.
González-Recio O., Toro M.A., and Bach A. 2015. Past, present, and future of epigenetics applied to livestock breeding. Front. Genet. 6: 305.
Greenberg M.V. and Bourc’his D. 2019. The diverse roles of DNA methylation in mammalian development and disease. Nat. Rev. Mol. Cell Biol. 20: 590–607.
He Y., Yang X., Xia J., Zhao L., and Yang Y. 2016. Consumption of meat and dairy products in China: a review. Proc. Nutr. Soc. 75(3): 385–391.
Hu C., Chen W., Myers S.J., Yuan H., and Traynelis S.F. 2016. Human GRIN2B variants in neurodevelopmental disorders. J. Pharmacol. Sci. 132(2): 115–121.
Huang da W., Sherman B.T., and Lempicki R.A. 2009. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4(1): 44–57.
Ibeagha-Awemu E.M. and Zhao X. 2015. Epigenetic marks: regulators of livestock phenotypes and conceivable sources of missing variation in livestock improvement programs. Front Genet. 6: 302.
Kawakami K., Largaespada D.A., and Ivics Z. 2017. Transposons as tools for functional genomics in vertebrate models. Trends Genet. 33(11): 784–801.
Kim J.M., Lim K.S., Byun M., Lee K.T., Yang Y.R., Park M., et al. 2017. Identification of the acclimation genes in transcriptomic responses to heat stress of White Pekin duck. Cell Stress Chaperones, 22(6): 787–797.
Langmead B. and Salzberg S.L. 2012. Fast gapped-read alignment with Bowtie 2. Nat. Methods, 9(4): 357–359.
Li M., Wu H., Luo Z., Xia Y., Guan J., Wang T., et al. 2012. An atlas of DNA methylomes in porcine adipose and muscle tissues. Nat. Commun. 3(1): 1–11.
Luo J., Yang Y., Liao K., Liu B., Chen Y., Shen L., et al. 2020. Genetic parameter estimation for reproductive traits in QingYu pigs and comparison of carcass and meat quality traits to Berkshire×QingYu crossbred pigs. Asian-Australas. J. Anim. Sci. 33(8): 1224–1232.
Megens H.J., Crooijmans R.P., San Cristobal M., Hui X., Li N., and Groenen M.A. 2008. Biodiversity of pig breeds from China and Europe estimated from pooled DNA samples: differences in microsatellite variation between two areas of domestication. Genet. Sel. Evol. 40(1): 103–128.,.
Niu L., Shi K., Xie J.J., Liu S., and Zhong T. 2018. Divergent evolutional mode and purifying selection of the KIT gene in European and Asian domestic pig breeds. Biomed Res Int. 2018: 8932945.
Platzer, K., and Lemke, J.R. 1993. GRIN2B-related neurodevelopmental disorder. In GeneReviews(®). Edited by M.P. Adam, H.H. Ardinger, R.A. Pagon, S.E. Wallace, L.J.H. Bean, K. Stephens, et al. University of Washington, Seattle.
Ponsuksili S., Trakooljul N., Basavaraj S., Hadlich F., Murani E., and Wimmers K. 2019. Epigenome-wide skeletal muscle DNA methylation profiles at the background of distinct metabolic types and ryanodine receptor variation in pigs. BMC Genomics, 20(1): 492.
Sato S., Uemoto Y., Kikuchi T., Egawa S., Kohira K., Saito T., et al. 2016. SNP- and haplotype-based genome-wide association studies for growth, carcass, and meat quality traits in a Duroc multigenerational population. BMC Genet. 17: 60.
Shen L., Zhu L., Liao K., Zhang Y., Lei H., and Li X. 2014. Carcass characteristics, meat quality characteristics and nutritional composition analysis of Qingyu pig. Acta Nutr. Sin. 36: 516–518.
Smith Z.D. and Meissner A. 2013. DNA methylation: roles in mammalian development. Nat. Rev. Genet. 14(3): 204–220.
Straussman R., Nejman D., Roberts D., Steinfeld I., Blum B., Benvenisty N., et al. 2009. Developmental programming of CpG island methylation profiles in the human genome. Nat. Struct. Mol. Biol. 16(5): 564–571.
Swain J.L., Stewart T.A., and Leder P. 1987. Parental legacy determines methylation and expression of an autosomal transgene: a molecular mechanism for parental imprinting. Cell, 50(5): 719–727.
Thompson R.P., Nilsson E., and Skinner M.K. 2020. Environmental epigenetics and epigenetic inheritance in domestic farm animals. Anim. Reprod. Sci. 220: 106316.
Triantaphyllopoulos K.A., Ikonomopoulos I., and Bannister A.J. 2016. Epigenetics and inheritance of phenotype variation in livestock. Epigenet. Chromatin, 9: 31.
Wang M. and Ibeagha-Awemu E.M. 2020. Impacts of epigenetic processes on the health and productivity of livestock. Front Genet. 11: 613636.
Wang X. and Kadarmideen H.N. 2019. An epigenome-wide DNA methylation map of testis in pigs for study of complex traits. Front Genet. 10: 405.
Worm Ørntoft M.B., Jensen S., Hansen T.B., Bramsen J.B., and Andersen C.L. 2017. Comparative analysis of 12 different kits for bisulfite conversion of circulating cell-free DNA. Epigenetics, 12(8): 626–636.
Yang S.L., Wang Z.G., Liu B., Zhang G.X., Zhao S.H., Yu M., et al. 2003. Genetic variation and relationships of eighteen Chinese indigenous pig breeds. Genet. Select. Evol. 35(6): 657–671.
Yang Y., Zhou R., Mu Y., Hou X., Tang Z., and Li K. 2016. Genome-wide analysis of DNA methylation in obese, lean, and miniature pig breeds. Sci. Rep. 6: 30160.
Zhang B., Ban D., Gou X., Zhang Y., Yang L., Chamba Y., and Zhang H. 2019. Genome-wide DNA methylation profiles in Tibetan and Yorkshire pigs under high-altitude hypoxia. J. Anim. Sci. Biotechnol. 10: 25.

Supplementary Material

Supplementary data (gen-2021-0006suppla.zip)

Information & Authors

Information

Published In

cover image Genome
Genome
Volume 65Number 1January 2022
Pages: 19 - 26

History

Received: 21 January 2021
Accepted: 30 June 2021
Accepted manuscript online: 9 July 2021
Version of record online: 9 July 2021

Permissions

Request permissions for this article.

Key Words

  1. DNA methylation
  2. reduced representation bisulfite sequencing
  3. Qingyu pig
  4. Landrace pig

Mots-clés

  1. méthylation de l’ADN
  2. séquençage bisulfite à représentation réduite
  3. porcs Qingyu
  4. porc Landrace

Authors

Affiliations

Kai Wang*
Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
Pingxian Wu*
Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
Shujie Wang
Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
Xiang Ji
Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
Dong Chen
Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
Weihang Xiao
Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
Yiren Gu
Sichuan Animal Science Academy, Chengdu, 610066, Sichuan, China.
Yangshuang Zeng
Sichuan Animal Husbandry Station, Chengdu, 610041, Sichuan, China.
Xu Xu
Sichuan Animal Husbandry Station, Chengdu, 610041, Sichuan, China.
Guoqing Tang [email protected]
Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.

Notes

*
These authors contributed equally to this work.
Copyright remains with the author(s) or their institution(s). Permission for reuse (free in most cases) can be obtained from copyright.com.

Funding Information

:
This study was supported by grants from the Sichuan Science and Technology Program (2020YFN0024, 2021YFYZ0030), the China Agriculture Research System of MOF and MARA (CARS-35-01A), the National Key R&D Program of China (2018YFD0501204), the National Natural Science Foundation of China (C170102), and the Sichuan Innovation Team of Pig (sccxtd-2021-08).

Metrics & Citations

Metrics

Other Metrics

Citations

Cite As

Export Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

1. Pig fetal skeletal muscle development is associated with genome-wide DNA hypomethylation and corresponding alterations in transcript and microRNA expression

View Options

Login options

Check if you access through your login credentials or your institution to get full access on this article.

Subscribe

Click on the button below to subscribe to Genome

Purchase options

Purchase this article to get full access to it.

Restore your content access

Enter your email address to restore your content access:

Note: This functionality works only for purchases done as a guest. If you already have an account, log in to access the content to which you are entitled.

View options

PDF

View PDF

Full Text

View Full Text

Media

Media

Other

Tables

Share Options

Share

Share the article link

Share on social media