Cookies Notification

We use cookies to improve your website experience. To learn about our use of cookies and how you can manage your cookie settings, please see our Cookie Policy.

Functional analysis of co-expression networks of zebrafish ace2 reveals enrichment of pathways associated with development and disease

Publication: Genome
4 October 2021


Human Angiotensin I Converting Enzyme 2 (ACE2) plays an essential role in blood pressure regulation and SARS-CoV-2 entry. ACE2 has a highly conserved, one-to-one ortholog (ace2) in zebrafish, which is an important model for human diseases. However, the zebrafish ace2 expression profile has not yet been studied during early development, between genders, across different genotypes, or in disease. Moreover, a network-based meta-analysis for the extraction of functionally enriched pathways associated with differential ace2 expression is lacking in the literature. Herein, we first identified significant development-, tissue-, genotype-, and gender-specific modulations in ace2 expression via meta-analysis of zebrafish Affymetrix transcriptomics datasets (ndatasets = 107); and the correlation analysis of ace2 meta-differential expression profile revealed distinct positively and negatively correlated local functionally enriched gene networks. Moreover, we demonstrated that ace2 expression was significantly modulated under different physiological and pathological conditions related to development, tissue, gender, diet, infection, and inflammation using additional RNA-seq datasets. Our findings implicate a novel translational role for zebrafish ace2 in organ differentiation and pathologies observed in the intestines and liver.


L’enzyme humaine de conversion de l’angiotensine 2 (ACE2) joue des rôles essentiels dans la régulation de la tension artérielle et l’entrée du SARS-CoV-2. L’ACE2 possède un orthologue direct très conservé (ace2) chez le poisson-zèbre, un organisme modèle important dans l’étude des maladies humaines. Cependant, le profil d’expression du gène ace2 chez le poisson-zèbre n’a pas encore été étudié au cours des premiers stades de développement, chez les deux sexes, au sein de différents génotypes et en cas de maladie. De plus, aucune méta-analyse fondée sur les réseaux n’a encore été faite pour identifier les sentiers fonctionnels qui sont enrichis en fonction de l’expression différentielle du gène ace2. Dans ce travail, les auteurs ont d’abord identifié des modulations spécifiques dans l’expression d’ace2 en fonction du stade de développement, du tissu, du génotype ou du sexe via une méta-analyse des jeux de données transcriptomiques Affymetrix pour le poisson-zèbre (njeux = 107). Une analyse de corrélation des profils d’expression méta-différentiels d’ace2 mis a au jour des réseaux géniques locaux distincts, à corrélation à la fois positive et négative, qui reflétaient un enrichissement fonctionnel. De plus, les auteurs ont démontré que l’expression d’ace2 était modulée de manière significative en fonction des conditions physiologiques et pathologiques liées au stade de développement, au tissu, au sexe, à la diète, à l’infection et à l’inflammation en utilisant des jeux de données RNA-seq additionnels. Ces résultats impliquent un rôle traductionnel inédit pour le gène ace2 du poisson-zèbre dans la différentiation des organes et des pathologies observées dans l’intestin et le foie. [Traduit par la Rédaction]

Get full access to this article

View all available purchase options and get full access to this article.


Abumweis S.S., Jew S., and Ames N.P. 2010. β-glucan from barley and its lipid-lowering capacity: a meta-analysis of randomized, controlled trials. Eur. J. Clin. Nutr. 64: 1472–1480.
Ali R.M., Al-Shorbagy M.Y., Helmy M.W., and EL-Abhar H.S. 2018. Role of Wnt4/beta-catenin, Ang II/TGFbeta, ACE2, NF-kappaB, and IL-18 in attenuating renal ischemia/reperfusion-induced injury in rats treated with Vit D and pioglitazone. Eur. J. Pharmacol. 831: 68–76.
Alvarez-Rodriguez M., Pereiro P., Reyes-Lopez F.E., Tort L., Figueras A., and Novoa B. 2018. Analysis of the long-lived responses induced by immunostimulants and their effects on a viral infection in zebrafish (Danio rerio). Front. Immunol. 9: 1575.
Anders S., Pyl P.T., and Huber W. 2015. HTSeq–a Python framework to work with high-throughput sequencing data. Bioinformatics, 31: 166–169.
Andersen L.B., Przybyl L., Haase N., VON Versen-Hoynck F., Qadri F., Jorgensen J.S., et al. 2015. Vitamin D depletion aggravates hypertension and target-organ damage. J. Am. Heart Assoc. 4: e001417.
Aramillo Irizar P., Schauble S., Esser D., Groth M., Frahm C., Priebe S., et al. 2018. Transcriptomic alterations during ageing reflect the shift from cancer to degenerative diseases in the elderly. Nat. Commun. 9: 327.
Barrett T., Wilhite S.E., Ledoux P., Evangelista C., Kim I.F., Tomashevsky M., et al. 2013. NCBI GEO: archive for functional genomics data sets–update. Nucleic Acids Res. 41: D991–D995.
Benskin L.L. 2020. A basic review of the preliminary evidence that COVID-19 risk and severity is increased in vitamin D deficiency. Front. Publ. Health, 8: 513.
Bleizgys A. 2021. Vitamin D and COVID-19: It is time to act. Int. J. Clin. Pract. 75: e13748.
Bleriot C. and Ginhoux F. 2019. Understanding the heterogeneity of resident liver macrophages. Front. Immunol. 10: 2694.
Cao X., Yang F.Y., Xin Z., Xie R.R., and Yang J.K. 2014. The ACE2/Ang-(1-7)/Mas axis can inhibit hepatic insulin resistance. Mol. Cell Endocrinol. 393: 30–38.
Cao X., Yang F., Shi T., Yuan M., Xin Z., Xie R., et al. 2016. Angiotensin-converting enzyme 2/angiotensin-(1-7)/Mas axis activates Akt signaling to ameliorate hepatic steatosis. Sci. Rep. 6: 21592.
Cao X., Lu X.M., Tuo X., Liu J.Y., Zhang Y.C., Song L.N., et al. 2019. Angiotensin-converting enzyme 2 regulates endoplasmic reticulum stress and mitochondrial function to preserve skeletal muscle lipid metabolism. Lipids Health Dis. 18: 207.
Chen L., Marishta A., Ellison C.E., and Verzi M.P. 2020a. Identification of transcription factors regulating SARS-CoV-2 entry genes in the intestine. Cell. Mol. Gastroenterol. Hepatol. 11: 181–184.
Chen L., Wang L., Cheng Q., Tu Y.X., Yang Z., Li R.Z., et al. 2020b. Anti-masculinization induced by aromatase inhibitors in adult female zebrafish. BMC Genomics, 21: 22.
Cheng Z. and Liu Z. 2019. Renin-angiotensin system gene polymorphisms and colorectal cancer risk: a meta-analysis. J. Renin. Angiotensin. Aldosterone Syst. 20: 1470320319881932.
Cheng, J., and Yang, L. 2013. Comparing gene expression similarity metrics for connectivity map. In 2013 IEEE International Conference on Bioinformatics and Biomedicine, Dec. 18–21, 2013, Shanghai, China. pp. 165–170.
Cheng P.Y., Lin C.C., Wu C.S., Lu Y.F., Lin C.Y., Chung C.C., et al. 2008. Zebrafish cdx1b regulates expression of downstream factors of Nodal signaling during early endoderm formation. Development, 135: 941–952.
Cheung M.W. and Vijayakumar R. 2016. A guide to conducting a meta-analysis. Neuropsychol. Rev. 26: 121–128.
Chou C.F., Loh C.B., Foo Y.K., Shen S., Fielding B.C., Tan T.H., et al. 2006. ACE2 orthologues in non-mammalian vertebrates (Danio, Gallus, Fugu, Tetraodon and Xenopus). Gene, 377: 46–55.
Coccheri S. 2020. COVID-19: The crucial role of blood coagulation and fibrinolysis. Intern. Emerg. Med. 15: 1369–1373.
Cuffe J.S., Burgess D.J., O’Sullivan L., Singh R.R., and Moritz K.M. 2016. Maternal corticosterone exposure in the mouse programs sex-specific renal adaptations in the renin-angiotensin-aldosterone system in 6-month offspring. Physiol. Rep. 4: e12754.
Dobin A., Davis C.A., Schlesinger F., Drenkow J., Zaleski C., Jha S., et al. 2013. STAR: ultrafast universal RNA-seq aligner. Bioinformatics, 29: 15–21.
Domazet-Loso T. and Tautz D. 2010. A phylogenetically based transcriptome age index mirrors ontogenetic divergence patterns. Nature, 468: 815–818.
Evangelou E. and Ioannidis J.P. 2013. Meta-analysis methods for genome-wide association studies and beyond. Nat. Rev. Genet. 14: 379–389.
Feng Q., Li L., and Wang X. 2020. Identifying pathways and networks associated with the SARS-CoV-2 cell receptor ACE2 based on gene expression profiles in normal and SARS-CoV-2-infected human tissues. Front. Mol. Biosci. 7: 568954.
Flores M.V., Hall C.J., Davidson A.J., Singh P.P., Mahagaonkar A.A., Zon L.I., et al. 2008. Intestinal differentiation in zebrafish requires Cdx1b, a functional equivalent of mammalian Cdx2. Gastroenterology, 135: 1665–1675.
Forn-Cuni G., Varela M., Pereiro P., Novoa B., and Figueras A. 2017. Conserved gene regulation during acute inflammation between zebrafish and mammals. Sci. Rep. 7: 41905.
Froehlicher M., Liedtke A., Groh K., Lopez-Schier H., Neuhauss S.C., Segner H., and Eggen R.I. 2009. Estrogen receptor subtype beta2 is involved in neuromast development in zebrafish (Danio rerio) larvae. Dev. Biol. 330: 32–43.
Gallagher P.E., Ferrario C.M., and Tallant E.A. 2008. MAP kinase/phosphatase pathway mediates the regulation of ACE2 by angiotensin peptides. Am. J. Physiol. Cell. Physiol. 295: C1169–74.
Ganz J., Melancon E., Wilson C., Amores A., Batzel P., Strader M., et al. 2019. Epigenetic factors Dnmt1 and Uhrf1 coordinate intestinal development. Dev. Biol. 455: 473–484.
Gautier L., Cope L., Bolstad B.M., and Irizarry R.A. 2004. affy–analysis of Affymetrix GeneChip data at the probe level. Bioinformatics, 20: 307–315.
Gava E., Samad-Zadeh A., Zimpelmann J., Bahramifarid N., Kitten G.T., Santos R.A., et al. 2009. Angiotensin-(1-7) activates a tyrosine phosphatase and inhibits glucose-induced signalling in proximal tubular cells. Nephrol. Dial Transplant, 24: 1766–1773.
Gomes M.C. and Mostowy S. 2020. The case for modeling human infection in Zebrafish. Trends Microbiol. 28: 10–18.
Goyal R., VAN-Wickle J., Goyal D., and Longo L.D. 2015. Antenatal maternal low protein diet: ACE-2 in the mouse lung and sexually dimorphic programming of hypertension. BMC Physiol. 15: 2.
Gupte M., Boustany-Kari C.M., Bharadwaj K., Police S., Thatcher S., Gong M.C., et al. 2008. ACE2 is expressed in mouse adipocytes and regulated by a high-fat diet. Am. J. Physiol. Regul. Integr. Comp. Physiol. 295: R781–R788.
Gur-Dedeoglu B., Konu O., Kir S., Ozturk A.R., Bozkurt B., Ergul G., and Yulug I.G. 2008. A resampling-based meta-analysis for detection of differential gene expression in breast cancer. BMC Cancer, 8: 396.
Gwathmey T.M., Pendergrass K.D., Reid S.D., Rose J.C., Diz D.I., and Chappell M.C. 2010. Angiotensin-(1-7)-angiotensin-converting enzyme 2 attenuates reactive oxygen species formation to angiotensin II within the cell nucleus. Hypertension, 55: 166–171.
Hamming I., Cooper M.E., Haagmans B.L., Hooper N.M., Korstanje R., Osterhaus A.D., et al. 2007. The emerging role of ACE2 in physiology and disease. J. Pathol. 212: 1–11.
Heiden T.C., Struble C.A., Rise M.L., Hessner M.J., Hutz R.J., and Carvan M.J. 3RD. 2008. Molecular targets of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) within the zebrafish ovary: insights into TCDD-induced endocrine disruption and reproductive toxicity. Reprod. Toxicol. 25: 47–57.
Hirano T. and Murakami M. 2020. COVID-19: a new virus, but a familiar receptor and cytokine release syndrome. Immunity, 52: 731–733.
Holden L.A. and Brown K.H. 2018. Baseline mRNA expression differs widely between common laboratory strains of zebrafish. Sci. Rep. 8: 4780.
Hu B., Chen H., Liu X., Zhang C., Cole G.J., Lee J.A., and Chen X. 2013. Transgenic overexpression of cdx1b induces metaplastic changes of gene expression in zebrafish esophageal squamous epithelium. Zebrafish, 10: 218–227.
Jacob V., Chernyavskaya Y., Chen X., Tan P.S., Kent B., Hoshida Y., and Sadler K.C. 2015. DNA hypomethylation induces a DNA replication-associated cell cycle arrest to block hepatic outgrowth in uhrf1 mutant zebrafish embryos. Development, 142: 510–521.
Jia H.P., Look D.C., Shi L., Hickey M., Pewe L., Netland J. Jr., et al. 2005. ACE2 receptor expression and severe acute respiratory syndrome coronavirus infection depend on differentiation of human airway epithelia. J. Virol. 79: 14614–14621.
Jia J., Qin J., Yuan X., Liao Z., Huang J., Wang B., et al. 2019. Microarray and metabolome analysis of hepatic response to fasting and subsequent refeeding in zebrafish (Danio rerio). BMC Genomics, 20: 919.
Johnson E., Vu L., and Matarese L.E. 2018. Bacteria, bones, and stones: managing complications of short bowel syndrome. Nutr. Clin. Pract. 33: 454–466.
Kim S.M., Kim Y.G., Jeong K.H., Lee S.H., Lee T.W., Ihm C.G., and Moon J.Y. 2012. Angiotensin II-induced mitochondrial Nox4 is a major endogenous source of oxidative stress in kidney tubular cells. PLoS ONE, 7: e39739.
Kimmel C.B., Ballard W.W., Kimmel S.R., Ullmann B., and Schilling T.F. 1995. Stages of embryonic development of the zebrafish. Dev. Dyn. 203: 253–310.
Koch B.E.V., Yang S., Lamers G., Stougaard J., and Spaink H.P. 2018. Intestinal microbiome adjusts the innate immune setpoint during colonization through negative regulation of MyD88. Nat. Commun. 9: 4099.
Kolde R., Laur S., Adler P., and Vilo J. 2012. Robust rank aggregation for gene list integration and meta-analysis. Bioinformatics, 28: 573–580.
Kramer S., Busch W., and Schuttler A. 2020. A self-organizing map of the fathead minnow liver transcriptome to identify consistent toxicogenomic patterns across chemical fingerprints. Environ. Toxicol. Chem. 39: 526–537.
Kryuchkova-Mostacci N. and Robinson-Rechavi M. 2017. A benchmark of gene expression tissue-specificity metrics. Brief. Bioinform. 18: 205–214.
Lee I.T., Nakayama T., Wu C.T., Goltsev Y., Jiang S., Gall P.A., et al. 2020a. ACE2 localizes to the respiratory cilia and is not increased by ACE inhibitors or ARBs. Nat. Commun. 11: 5453.
Lee I.T., Nakayama T., Wu C.T., Goltsev Y., Jiang S., Gall P.A., et al. 2020b. Robust ACE2 protein expression localizes to the motile cilia of the respiratory tract epithelia and is not increased by ACE inhibitors or angiotensin receptor blockers. medRxiv. [In press.].
Liu W., Qiao Q., Chen Y., Wu K., and Zhang X. 2014. Microcystin-LR exposure to adult zebrafish (Danio rerio) leads to growth inhibition and immune dysfunction in F1 offspring, a parental transmission effect of toxicity. Aquat. Toxicol. 155: 360–367.
Logan S.L., Thomas J., Yan J., Baker R.P., Shields D.S., Xavier J.B., et al. 2018. The Vibrio cholerae type VI secretion system can modulate host intestinal mechanics to displace gut bacterial symbionts. Proc. Natl. Acad. Sci. U.S.A. 115: E3779–E3787.
Love M.I., Huber W., and Anders S. 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15: 550.
Lu H., Cui Y., Jiang L., and Ge W. 2017. Functional analysis of nuclear estrogen receptors in zebrafish reproduction by genome editing approach. Endocrinology, 158: 2292–2308.
MacInnes A.W., Amsterdam A., Whittaker C.A., Hopkins N., and Lees J.A. 2008. Loss of p53 synthesis in zebrafish tumors with ribosomal protein gene mutations. Proc. Natl. Acad. Sci. U.S.A. 105: 10408–10413.
Marjoram L., Alvers A., Deerhake M.E., Bagwell J., Mankiewicz J., Cocchiaro J.L., et al. 2015. Epigenetic control of intestinal barrier function and inflammation in zebrafish. Proc. Natl. Acad. Sci. U.S.A. 112: 2770–2775.
McCarthy D.J., Chen Y., and Smyth G.K. 2012. Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation. Nucleic Acids Res. 40: 4288–4297.
Mickiewicz K.M., Kawai Y., Drage L., Gomes M.C., Davison F., Pickard R., et al. 2019. Possible role of L-form switching in recurrent urinary tract infection. Nat. Commun. 10: 4379.
Mompeon A., Lazaro-Franco M., Bueno-Beti C., Perez-Cremades D., Vidal-Gomez X., Monsalve E., et al. 2016. Estradiol, acting through ERalpha, induces endothelial non-classic renin-angiotensin system increasing angiotensin 1-7 production. Mol. Cell. Endocrinol. 422: 1–8.
Musavi H., Abazari O., Barartabar Z., Kalaki-Jouybari F., Hemmati-Dinarvand M., Esmaeili P., and Mahjoub S. 2020. The benefits of Vitamin D in the COVID-19 pandemic: biochemical and immunological mechanisms. Arch. Physiol. Biochem. pp. 1–9. [In press.].
Mutanen A., Barrett M., Feng Y., Lohi J., Rabah R., Teitelbaum D.H., and Pakarinen M.P. 2019. Short bowel mucosal morphology, proliferation and inflammation at first and repeat STEP procedures. J. Pediatr. Surg. 54: 511–516.
Nehme A., Zouein F.A., Zayeri Z.D., and Zibara K. 2019. An Update on the tissue renin angiotensin system and its role in physiology and pathology. J. Cardiovasc. Dev. Dis. 6: 14.
Okuda Y., Ogura E., Kondoh H., and Kamachi Y. 2010. B1 SOX coordinate cell specification with patterning and morphogenesis in the early zebrafish embryo. PLoS Genet, 6: e1000936.
Papatheodorou I., Moreno P., Manning J., Fuentes A.M., George N., Fexova S., et al. 2020. Expression Atlas update: from tissues to single cells. Nucleic Acids Res. 48: D77–D83.
Pinter M. and Jain R.K. 2017. Targeting the renin-angiotensin system to improve cancer treatment: Implications for immunotherapy. Sci. Transl. Med. 9: eaan5616.
Postlethwait J.H., Massaquoi M.S., Farnsworth D.R., Yan Y.L., Guillemin K., and Miller A.C. 2021. The SARS-CoV-2 receptor and other key components of the Renin-Angiotensin-Aldosterone System related to COVID-19 are expressed in enterocytes in larval zebrafish. Biol. Open, 10: bio058172.
Rasha F., Ramalingam L., Gollahon L., Rahman R.L., Rahman S.M., Menikdiwela K., and Moustaid-Moussa N. 2019. Mechanisms linking the renin-angiotensin system, obesity, and breast cancer. Endocr. Relat. Cancer, 26: R653–R672.
Ritchie M.E., Phipson B., Wu D., Hu Y., Law C.W., Shi W., and Smyth G.K. 2015. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43: e47.
Robinson M.W., Harmon C., and O’Farrelly C. 2016. Liver immunology and its role in inflammation and homeostasis. Cell. Mol. Immunol. 13: 267–276.
Robison B.D., Drew R.E., Murdoch G.K., Powell M., Rodnick K.J., Settles M., et al. 2008. Sexual dimorphism in hepatic gene expression and the response to dietary carbohydrate manipulation in the zebrafish (Danio rerio). Comp. Biochem. Physiol. Part D Genomics Proteomics, 3: 141–154.
Rogers E.D., Henry T.B., Twiner M.J., Gouffon J.S., Mcpherson J.T., Boyer G.L., et al. 2011. Global gene expression profiling in larval zebrafish exposed to microcystin-LR and microcystis reveals endocrine disrupting effects of cyanobacteria. Environ. Sci. Technol. 45: 1962–1969.
San B., Aben M., Elurbe D.M., Voeltzke K., DEN Broeder M.J., Rougeot J., et al. 2018. Genetic and epigenetic regulation of zebrafish intestinal development. Epigenomes, 2: 19.
Schall K.A., Thornton M.E., Isani M., Holoyda K.A., Hou X., Lien C.L., et al. 2017. Short bowel syndrome results in increased gene expression associated with proliferation, inflammation, bile acid synthesis and immune system activation: RNA sequencing a zebrafish SBS model. BMC Genomics, 18: 23.
Shannon P., Markiel A., Ozier O., Baliga N.S., Wang J.T., Ramage D., et al. 2003. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13: 2498–2504.
Sheahan T., Morrison T.E., Funkhouser W., Uematsu S., Akira S., Baric R.S., and Heise M.T. 2008. MyD88 is required for protection from lethal infection with a mouse-adapted SARS-CoV. PLoS Pathog. 4: e1000240.
Shehwana H. and Konu O. 2019. Comparative transcriptomics between zebrafish and mammals: a roadmap for discovery of conserved and unique signaling pathways in physiology and disease. Front. Cell Dev. Biol. 7: 5.
Shen L., Ma C., Shuai B., and Yang Y. 2017. Effects of 1,25-dihydroxyvitamin D3 on the local bone renin-angiotensin system in a murine model of glucocorticoid-induced osteoporosis. Exp. Ther. Med. 13: 3297–3304.
Shi T.T., Yang F.Y., Liu C., Cao X., Lu J., Zhang X.L., et al. 2018. Angiotensin-converting enzyme 2 regulates mitochondrial function in pancreatic beta-cells. Biochem. Biophys. Res. Commun. 495: 860–866.
Shoemaker R., Tannock L.R., Su W., Gong M., Gurley S.B., Thatcher S.E., et al. 2019. Adipocyte deficiency of ACE2 increases systolic blood pressures of obese female C57BL/6 mice. Biol. Sex Differ. 10: 45.
Silberg D.G., Swain G.P., Suh E.R., and Traber P.G. 2000. Cdx1 and cdx2 expression during intestinal development. Gastroenterology, 119: 961–971.
Small C.M., Carney G.E., Mo Q., Vannucci M., and Jones A.G. 2009. A microarray analysis of sex- and gonad-biased gene expression in the zebrafish: evidence for masculinization of the transcriptome. BMC Genomics, 10: 579.
Song R., Preston G., and Yosypiv I.V. 2012. Ontogeny of angiotensin-converting enzyme 2. Pediatr. Res. 71: 13–19.
Song L.N., Liu J.Y., Shi T.T., Zhang Y.C., Xin Z., Cao X., and Yang J.K. 2020. Angiotensin-(1-7), the product of ACE2 ameliorates NAFLD by acting through its receptor Mas to regulate hepatic mitochondrial function and glycolipid metabolism. FASEB J. 34: 16291–16306.
Soni K., Choudhary A., Patowary A., Singh A.R., Bhatia S., Sivasubbu S., et al. 2013. miR-34 is maternally inherited in Drosophila melanogaster and Danio rerio. Nucleic Acids Res. 41: 4470–4480.
Stuckenholz C., Lu L., Thakur P., Kaminski N., and Bahary N. 2009. FACS-assisted microarray profiling implicates novel genes and pathways in zebrafish gastrointestinal tract development. Gastroenterology, 137: 1321–1332.
Suarez-Farinas M., Tokuyama M., Wei G., Huang R., Livanos A., Jha D., et al. 2020. Intestinal inflammation modulates the expression of ACE2 and TMPRSS2 and potentially overlaps with the pathogenesis of SARS-CoV-2 related disease. Gastroenterology, 160: 287–301.e20.
Sun X., Wang H., Hodge H., Wright K.N., Ahmad S., Ferrario C.M., and Groban L. 2021. Amplifying effect of chronic lisinopril therapy on diastolic function and the angiotensin-(1-7) Axis by the G1 agonist in ovariectomized spontaneously hypertensive rats. Transl. Res. 235: 62–76.
Szklarczyk D., Franceschini A., Wyder S., Forslund K., Heller D., Huerta-Cepas J., et al. 2015. STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 43: D447–D452.
Szklarczyk D., Gable A.L., Lyon D., Junge A., Wyder S., Huerta-Cepas J., et al. 2019. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 47: D607–D613.
Ter Veer E., Van Oijen M.G.H., and Van Laarhoven H.W.M. 2019. The use of (network) meta-analysis in clinical oncology. Front. Oncol. 9: 822.
Thakur P.C., Davison J.M., Stuckenholz C., Lu L., and Bahary N. 2014. Dysregulated phosphatidylinositol signaling promotes endoplasmic-reticulum-stress-mediated intestinal mucosal injury and inflammation in zebrafish. Dis. Model. Mech. 7: 93–106.
Tseng G.C., Ghosh D., and Feingold E. 2012. Comprehensive literature review and statistical considerations for microarray meta-analysis. Nucleic Acids Res. 40: 3785–3799.
Vargas M., Servillo G., and Einav S. 2020. Lopinavir/ritonavir for the treatment of SARS, MERS and COVID-19: a systematic review. Eur. Rev. Med. Pharmacol. Sci. 24: 8592–8605.
Verstockt B., Verstockt S., Abdu Rahiman S., Ke B.J., Arnauts K., Cleynen I., et al. 2021. Intestinal receptor of SARS-CoV-2 in inflamed IBD tissue seems downregulated by HNF4A in ileum and upregulated by interferon regulating factors in colon. J. Crohns Colitis, 15: 485–498.
Wang Y., Wang Y., Luo W., Huang L., Xiao J., Li F., et al. 2020. A comprehensive investigation of the mRNA and protein level of ACE2, the putative receptor of SARS-CoV-2, in human tissues and blood cells. Int. J. Med. Sci. 17: 1522–1531.
White R.J., Collins J.E., Sealy I.M., Wali N., Dooley C.M., Digby Z., et al. 2017. A high-resolution mRNA expression time course of embryonic development in zebrafish. eLife, 6: e30860.
Willis A.R., Moore C., Mazon-Moya M., Krokowski S., Lambert C., Till R., et al. 2016. Injections of predatory bacteria work alongside host immune cells to treat Shigella infection in zebrafish larvae. Curr. Biol. 26: 3343–3351.
Woolbright B.L., Williams C.D., Ni H., Kumer S.C., Schmitt T., Kane B., and Jaeschke H. 2017. Microcystin-LR induced liver injury in mice and in primary human hepatocytes is caused by oncotic necrosis. Toxicon, 125: 99–109.
Wu K., Song W., Zhang Z., and Ge W. 2020. Disruption of dmrt1 rescues the all-male phenotype of the cyp19a1a mutant in zebrafish - a novel insight into the roles of aromatase/estrogens in gonadal differentiation and early folliculogenesis. Development, 147: dev182758.
Yang M., Ma X., Xuan X., Deng H., Chen Q., and Yuan L. 2020. Liraglutide attenuates non-alcoholic fatty liver disease in mice by regulating the local renin-angiotensin system. Front. Pharmacol. 11: 432.
Yao T.T., Qian J.D., Zhu W.Y., Wang Y., and Wang G.Q. 2020. A systematic review of lopinavir therapy for SARS coronavirus and MERS coronavirus - a possible reference for coronavirus disease-19 treatment option. J. Med. Virol. 92: 556–563.
Yildiz G., Arslan-Ergul A., Bagislar S., Konu O., Yuzugullu H., Gursoy-Yuzugullu O., et al. 2013. Genome-wide transcriptional reorganization associated with senescence-to-immortality switch during human hepatocellular carcinogenesis. PLoS ONE, 8: e64016.
Yoon S., Nguyen H.C.T., Jo W., Kim J., Chi S.M., Park J., et al. 2019. Biclustering analysis of transcriptome big data identifies condition-specific microRNA targets. Nucleic Acids Res. 47: e53.
Yu G., Wang L.G., Han Y., and He Q.Y. 2012. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS, 16: 284–287.
Yuan J., Fan D., Xue Z., Qu J., and Su J. 2020. Co-expression of mitochondrial genes and ACE2 in cornea involved in COVID-19. Invest. Ophthalmol. Vis. Sci. 61: 13.
Zeituni E.M., Wilson M.H., Zheng X., Iglesias P.A., Sepanski M.A., Siddiqi M.A., et al. 2016. Endoplasmic Reticulum Lipid Flux Influences Enterocyte Nuclear Morphology and Lipid-dependent Transcriptional Responses. J. Biol. Chem. 291: 23804–23816.
Zhang W., Xu Y.Z., Liu B., Wu R., Yang Y.Y., Xiao X.Q., and Zhang X. 2014. Pioglitazone upregulates angiotensin converting enzyme 2 expression in insulin-sensitive tissues in rats with high-fat diet-induced nonalcoholic steatohepatitis. Sci. World J. 2014: 603409.
Zhou X., Wang M., Katsyv I., Irie H., and Zhang B. 2018. EMUDRA: ensemble of multiple drug repositioning approaches to improve prediction accuracy. Bioinformatics, 34: 3151–3159.
Ziegler C.G.K., Allon S.J., Nyquist S.K., Mbano I.M., Miao V.N., Tzouanas C.N., et al. 2020. SARS-CoV-2 receptor ACE2 is an interferon-stimulated gene in human airway epithelial cells and is detected in specific cell subsets across tissues. Cell, 181: 1016–1035. e19.

Supplementary Material

Supplementary data (gen-2021-0033suppla.pdf)

Information & Authors


Published In

cover image Genome
Volume 65Number 2February 2022
Pages: 57 - 74


Received: 26 March 2021
Accepted: 22 September 2021
Accepted manuscript online: 4 October 2021
Version of record online: 4 October 2021


Request permissions for this article.

Key Words

  1. zebrafish
  2. ace2
  3. transcriptome
  4. network analysis
  5. meta-analysis


  1. poisson-zèbre
  2. ace2
  3. transcriptome
  4. analyse de réseaux
  5. méta-analyse



Ayse Gokce Keskus
Interdisciplinary Program in Neuroscience, Bilkent University, Ankara, Turkey.
Melike Tombaz
Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey.
Burcin Irem Arici
Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey.
Fatma Betul Dincaslan
Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey.
Afshan Nabi
Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey.
Faculty of Engineering and Natural Sciences, Sabancı University, Istanbul, Turkey.
Huma Shehwana
Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey.
Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, Pakistan.
Interdisciplinary Program in Neuroscience, Bilkent University, Ankara, Turkey.
Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey.
UNAM-Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, Turkey.

Metrics & Citations


Other Metrics


Cite As

Export Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

There are no citations for this item

View Options

Get Access

Login options

Check if you access through your login credentials or your institution to get full access on this article.


Click on the button below to subscribe to Genome

Purchase options

Purchase this article to get full access to it.

Restore your content access

Enter your email address to restore your content access:

Note: This functionality works only for purchases done as a guest. If you already have an account, log in to access the content to which you are entitled.

View options


View PDF

Full Text

View Full Text





Share Options


Share the article link

Share on social media