Cookies Notification

We use cookies to improve your website experience. To learn about our use of cookies and how you can manage your cookie settings, please see our Cookie Policy.
×

An endogenous retrovirus presumed to have been endogenized or relocated recently in a marsupial, the red-necked wallaby

Publication: Genome
14 January 2022

Abstract

An albino infant wallaby was born to a mother with wild-type body color. PCR and sequencing analyses of TYR (encoding tyrosinase, which is essential for melanin biosynthesis) of this albino wallaby revealed a 7.1-kb-long DNA fragment inserted in the first exon. Since the fragment carried long terminal repeats, we assumed it to be a copy of an endogenous retrovirus, which we named walb. We cloned other walb copies residing in the genomes of this species and of another wallaby species. The copies exhibited length variation, and the longest copy (>8.0 kb) contained open reading frames whose deduced amino acid sequences were well aligned with those of gag, pol, and env of retroviruses. It is unknown through which of the following likely processes the walb copy was inserted into TYR: endogenization (infection of a germline cell by an exogenous virus), reinfection (infection by a virus produced from a previously endogenized provirus), or retrotransposition (intracellular relocation of a provirus). In any case, the insertion into TYR is considered to have been a recent event on an evolutionary timescale because albino mutant alleles generally do not persist for long because of their deleterious effects in wild circumstances.

Résumé

Un jeune wallaby albinos est né d’une mère de type sauvage en ce qui a trait à sa pigmentation corporelle. Des analyses PCR et le séquençage du gène TYR (codant pour la tyrosinase, laquelle est essentielle à la synthèse de mélanine) de ce wallaby albinos a révélé une insertion de 7,1 kb au sein du premier exon. Du fait que l’insertion présentait de longues répétitions terminales, les auteurs ont postulé qu’il s’agissait d’une copie d’un rétrovirus endogène, lequel a été nommé walb. Les auteurs ont cloné d’autres copies de walb qui étaient présentes au sein des génomes de cette espèce et d’autres espèces de wallaby. Ces copies affichaient une longueur variable et la plus grande (> 8,0 kb) contenait des cadres de lecture pour des séquences peptidiques qui s’alignaient bien avec celles des gènes gag, pol et env des rétrovirus. Les auteurs n’ont pu déterminer par quel processus la copie de walb s’est insérée au sein du gène TYR : l’endogénisation (infection d’une cellule germinale par un virus exogène), la réinfection (infection par un virus issu d’un provirus ayant subi l’endogénisation auparavant), ou la rétrotransposition (relocalisation intracellulaire d’un provirus). Dans tous les cas, l’insertion dans le gène TYR est considérée comme étant récente à l’échelle de l’évolution parce que les mutants albinos n’ont pas tendance à persister au sein de populations sauvages en raison de leur impact délétère.

Get full access to this article

View all available purchase options and get full access to this article.

References

Baillie G.J. and Wilkins R.J. 2001. Endogenous type D retrovirus in a marsupial, the common brushtail possum (Trichosurus vulpecula). J. Virol. 75: 2499–2507.
Bannert N. and Kurth R. 2006. The evolutionary dynamics of human endogenous retroviral families. Annu. Rev. Genomics Hum. Genet. 7: 149–173.
Boeke, J.D., and Stoye, J.P. 1997. Retrotransposons, endogenous retroviruses, and the evolution of retroelements. In Retroviruses. Edited by J.M. Coffin, S.H. Hughes, and H.E. Varmus. Cold Spring Harbor Laboratory Press, New York.
Bruner K.M., Murray A.J., Pollack R.A., Soliman M.G., Laskey S.B., Capoferri A.A., et al. 2016. Defective proviruses rapidly accumulate during acute HIV-1 infection. Nat. Med. 22: 1043–1049.
Costas J. 2001. Evolutionary dynamics of the human endogenous retrovirus family HERV-K inferred from full-length proviral genomes. J. Mol. Evol. 53(3): 237–243.
Eickbush T.H. and Jamburuthugoda V.K. 2008. The diversity of retrotransposons and the properties of their reverse transcriptases. Virus Res. 134: 221–234.
Escalera-Zamudio M., Mendoza M.L., Loza-Rubio E., Rojas-Anaya E., Méndez-Ojeda M.L., et al. 2015. A novel endogenous betaretrovirus in the common vampire bat (Desmodus rotundus) suggests multiple independent infection and cross-species transmission events. J. Virol. 89: 5180–5184.
Koga A. 2012. Under-representation of repetitive sequences in whole-genome shotgun sequence databases: an illustration using a recently acquired transposable element. Genome, 55(2): 172–175.
Koga A., Hisakawa C., and Yoshizawa M. 2020. Baboon bearing resemblance in pigmentation pattern to Siamese cat carries a missense mutation in the tyrosinase gene. Genome. 63: 275–279.
Körner A. and Pawelek J. 1982. Mammalian tyrosinase catalyzes three reactions in the biosynthesis of melanin. Science, 217(4565): 1163–1165.
Kumar S., Stecher G., Li M., Knyaz C., and Tamura K. 2018. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol. Biol. Evol. 35: 1547–1549.
Lander E.S., Linton L.M., Birren B., Nusbaum C., Zody M.C., Baldwin J., et al. 2001. Initial sequencing and analysis of the human genome. Nature, 409: 860–921.
Llorens C., Muñoz-Pomer A., Bernad L., Botella H., and Moya A. 2009. Network dynamics of eukaryotic LTR retroelements beyond phylogenetic trees. Biol. Direct, 4: 41.
Mae Y., Nagara K., Miyazaki M., Katsura Y., Enomoto Y., and Koga A. 2020. Complex intragene deletion leads to oculocutaneous albinism in tanuki (Japanese raccoon dog). Genome. 63: 517–523.
Paces J., Pavlícek A., Zika R., Kapitonov V.V., Jurka J., and Paces V. 2004. HERVd: the Human Endogenous RetroViruses Database: update. Nucleic Acids Res. 32: D50.
Vargiu L., Rodriguez-Tomé P., Sperber G.O., et al. 2016. Classification and characterization of human endogenous retroviruses; mosaic forms are common. Retrovirology, 22: 7.
Vitte C. and Panaud O. 2003. Formation of Solo-LTRs through unequal homologous recombination counterbalances amplifications of LTR retrotransposons in rice Oryza sativa L. Mol. Biol. Evol. 20: 528–540.
Zhang X.H., Heller K.A., Hefter I., Leslie C.S., and Chasin L.A. 2003. Sequence information for the splicing of human pre-mRNA identified by support vector machine classification. Genome Res. 13: 2637–2650.

Supplementary Material

Summary

This article contains electronic supplementary material (Table S1; Figs. S1, S2).

Resources

Supplementary data (gen-2021-0047suppla.pdf)

Information & Authors

Information

Published In

cover image Genome
Genome
Volume 65Number 5May 2022
Pages: 277 - 286

History

Received: 18 May 2021
Accepted: 25 December 2021
Accepted manuscript online: 14 January 2022
Version of record online: 14 January 2022

Permissions

Request permissions for this article.

Key Words

  1. albinism
  2. marsupial
  3. endogenous retrovirus
  4. retrotransposon
  5. long terminal repeat

Mots-clés

  1. albinisme
  2. marsupial
  3. rétrovirus endogène
  4. rétrotransposon
  5. longue répétition terminale

Authors

Affiliations

Sakura Hayashi
Primate Research Institute, Kyoto University, Inuyama City, Japan.
Konami Shimizu
Noichi Zoological Park of Kochi Prefecture, Konan City, Japan.
Yusuke Honda
Noichi Zoological Park of Kochi Prefecture, Konan City, Japan.
Yukako Katsura
Primate Research Institute, Kyoto University, Inuyama City, Japan.
Akihiko Koga [email protected]
Primate Research Institute, Kyoto University, Inuyama City, Japan.

Metrics & Citations

Metrics

Other Metrics

Citations

Cite As

Export Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

1. White Crow: 18-Nucleotide Deletion Leading to the Absence of Six Amino Acids
2. Characterization of the marsupial endogenous retrovirus walb with a focus on satellite DNA formation
3. Kangaroo endogenous retrovirus (KERV) forms megasatellite DNA with a simple repetition pattern in which the provirus structure is retained
4. Marsupial genome analysis suggests that satellite DNA formation from walb endogenous retrovirus is an event specific to the red‐necked wallaby
5. Marsupial satellite DNA as faithful reflections of long-terminal repeat retroelement structure
6. Expansion of a retrovirus lineage in the koala genome

View Options

Login options

Check if you access through your login credentials or your institution to get full access on this article.

Subscribe

Click on the button below to subscribe to Genome

Purchase options

Purchase this article to get full access to it.

Restore your content access

Enter your email address to restore your content access:

Note: This functionality works only for purchases done as a guest. If you already have an account, log in to access the content to which you are entitled.

View options

PDF

View PDF

Full Text

View Full Text

Figures

Tables

Media

Share Options

Share

Share the article link

Share on social media