Cookies Notification

We use cookies to improve your website experience. To learn about our use of cookies and how you can manage your cookie settings, please see our Cookie Policy.
×

Abstract

Genome size (GS) or DNA nuclear content is considered a useful index for making inferences about evolutionary models and life history in animals, including taxonomic, biogeographical, and ecological scenarios. However, patterns of GS variation and their causes in crustaceans are still poorly understood. This study aimed to describe the GS of five Neotropical Synalpheus non-gambarelloides shrimps (S. apioceros, S. minus, S. brevicarpus, S. fritzmueller, and S. scaphoceris) and compare the C-values of all Caridea infraorder in terms of geography and phylogenetics. All animals were sampled in the coast of São Paulo State, Brazil, and GS was assessed by flow cytometry analysis (FCA). The C-values ranged from 7.89 pg in S. apioceros to 12.24 pg in S. scaphoceris. Caridean shrimps had higher GS than other Decapoda crustaceans. The results reveal a tendency of obtaining larger genomes in species with direct development in Synalpheus shrimps. In addition, a tendency of positive biogeographical (latitudinal) correlation with Caridea infraorder was also observed. This study provides remarkable and new protocol for FCA (using gating strategy for the analysis), which led to the discovery of new information regarding GS of caridean shrimps, especially for Neotropical Synalpheus, which represents the second-largest group in the Caridea infraorder.

Résumé

La taille du génome ou le contenu en ADN nucléaire est considéré comme un indice utile pour faire des inférences au sujet des modèles évolutifs et de l’histoire de vie chez les animaux, incluant des scénarios taxonomiques, biogéographiques et écologiques. Cependant, les types de variation quant à la taille des génomes ainsi que leurs causes sont encore mal compris chez les crustacées. Cette étude visait à décrire la variation pour la taille du génome chez cinq espèces de crevettes néotropicales Synalpheus nongambarelloïdes (S. apioceros, S. minus, S. brevicarpus, S. fritzmueller et S. scaphoceris) et de comparer les valeurs C au sein du sous-ordre Caridea en termes de géographie et de phyllogénétique. Tous les spécimens ont été capturés sur la côte de l’état de São Paulo au Brésil et la taille du génome a été mesurée par cytométrie en flux (FCA). Les valeurs C variaient entre 7,89 pg chez le S. apioceros et 12,24 pg chez le S. scaphoceris. Les crevettes caridéennes présentaient des génomes de plus grande taille que les autres crustacées de l’ordre des Decapoda. Les résultats ont révélé une tendance à l’accroissement de la taille des génomes chez les crevettes du genre Synalpheus présentant un développement direct. De plus, les auteurs ont également noté une corrélation biogéographique positive (latitudinale) au sein du sous-ordre Caridea. Cette étude rapporte un nouveau protocole remarquable pour l’analyse FCA (faisant appel à une stratégie d’analyse hiérarchique), lequel a permis de faire des observations inédites au sujet de la taille du génome chez les crevettes caridéennes, spécifiquement chez des espèces néotropicales du genre Synalpheus, lequel représente le second plus grand groupe au sein du sous-ordre Caridea. [Traduit par la Rédaction]

Get full access to this article

View all available purchase options and get full access to this article.

References

Almeida A.O., Boehs G., Araújo-Silva C.L., Bezerra L.E. 2012. Shallow-water caridean shrimps from southern Bahia, Brazil, including the first record of Synalpheus ul (Ríos & Duffy, 2007) (Alpheidae) in the southwestern Atlantic Ocean. Zootaxa, 3347: 1–35.
Anker A., Pachelle P.P.G., De Grave S., Hultgren K.M. 2012. Taxonomic and biological notes on some Atlantic species of the snapping shrimp genus Synalpheus Spence Bate, 1888 (Decapoda, Alpheidae). Zootaxa, 3598: 1–96.
Anker A., Tavares M., Mendonça J.B. 2016. Alpheid shrimps (Decapoda: Caridea) of the Trindade & Martin Vaz Archipelago, off Brazil, with new records, description of a new species of Synalpheus and remarks on zoogeographical patterns in the oceanic islands of the tropical southern Atlantic. Zootaxa. 4138: 1–58.
Anker A., De Grave S. 2008. Zuzalpheus Ríos and Duffy, 2007: a junior synonym of Synalpheus Bate, 1888 (Crustacea, Decapoda, Alpheidae). J. Crustacean Biol. 28: 735–740.
Bachmann K., Rheinsmith E.L. 1973. Nuclear DNA amounts in pacific Crustacea. Chromosoma, 43: 225–236.
Bartoń K. 2020. MuMIn: multi-model inference. R package version 1.43.17. Available from https://CRAN.R-project.org/package=MuMIn.
Barzotti R., Pelliccia F., Rocchi A. 2006. DNA methylation, histone H3 methylation, and histone H4 acetylation in the genome of a crustacean. Genome, 49: 87–90.
Bauer R.T. 2004. Remarkable shrimps: adaptations and natural history of the carideans. Vol. 7. University of Oklahoma Press, Norman, OK.
Bonnivard E., Catrice O., Ravaux J., Brown S.C., Higuet D. 2009. Survey of genome size in 28 hydrothermal vent species covering 10 families. Genome, 52(6): 524–536.
Bouckaert R., Heled J., Kühnert D., Vaughan T., Wu CH. Xie D., et al. 2014. BEAST 2: a software platform for Bayesian evolutionary analysis. PLOS Comput. Biol. 10(4): e1003537.
Burnham K., Anderson D. 2002. Model selection and multimodel inference: a practical information-theoretic approach. 2nd ed. Springer, Berlin.
Carvalho M.L., Oliveira C., Navarrete M.C., Froehlich O., Foresti F. 2002. Nuclear DNA content determination in Characiformes fish (Teleostei, Ostariophysi) from the Neotropical region. Genet. Mol. Biol. 25(1): 49–55.
Cavalier-Smith T. 1978. Nuclear volume control by nucleoskeletal DNA, selection for cell volume and cell growth rate, and the solution of the DNA C-value paradox. J. Cell Sci. 34(1): 247–278.
Chace F.A. 1951. The number of species of decapod and stomatopod Crustacea. J. Wash. Acad. Sci. 41(11): 370–372.
Chak S.T.C., Harris S.E., Hultgren K.M., Jeffery N.W., Rebenstein D.R. 2021. Eusociality in snapping shrimps is associated with larger genomes and an accumulation of transposable elements. Proc. Natl. Acad. Sci. U.S.A. 118(24): 1–10.
Christoffersen, M.L. 1979. Decapod Crustacea: Alpheoida. Campagne de la Calypso au large des côtes atlantiques de l’Amérique du Sud (1961–1962). I. Résultats scientifiques des Campagnes de la Calypso. Annales de l’Institut Océanographique Monaco, 55: 297– 377.
Christoffersen M.L. 1998. Malacostraca. Eucarida. Caridea. Crangonoidea and Alpheoidea (Except Glyphocrangonidae and Crangonidae). In Catalogue of Crustacea of Brazil. Edited by P.S. Young. Museu Nacional, Rio de Janeiro. pp. 351–372.
Coutière H. 1909. The American species of snapping shrimps of the genus Synalpheu s. Proc. U.S. Natl. Mus. 36: 1–93.
Dardeau, M.R. 1986. Redescription of Synalpheus scaphoceris Coutière, 1910 (Decapoda: Alpheidae) with new records from the Gulf of Mexico. Journal of Crustacean Biology, 6: 491–496.
De Grave S., Fransen C.H.J.M. 2011. Carideorum catalogus: the recent species of the dendrobranchiate, stenopodidean, procarididean and caridean shrimps (Crustacea: Decapoda). Zool. Meded. 85: 195–589.
De Grave S., Pentcheff N.D., Ahyong S.T., Chan T.Y., Crandall K.A. Dworschak P.C., et al. 2009. A classification of living and fossil genera of decapod crustaceans. Raffles Bull. Zool. 21: 1–109.
Dixon C.J., Ahyong S.T., Schram F.R. 2003. A new hypothesis of decapod phylogeny. Crustaceana, 76(8): 935–975.
Duffy J.E. 1996. Eusociality in a coral-reef shrimp. Nature, 381: 512–514.
Duffy J.E. 2003. The ecology and evolution of eusociality in sponge-dwelling shrimp. In Genes, behavior and evolution in social insects. Edited by T. Kikuchi. University of Hokkaido Press, Sapporo, Japan, Sapporo, Japan. pp. 1–38.
Duffy J.E., Macdonald K.S. 2009. Kin structure, ecology and the evolution of social organization in shrimp: a comparative analysis. Proc. R. Soc. B. 277: 575–584.
Duffy J.E., Morrison C.L., Ríos R. 2000. Multiple origins of eusociality among sponge-dwelling shrimps (Synalpheus). Evolution, 24(2): 503–516.
Elliott T.A., Gregory T.R. 2015. What's in a genome? The C-value enigma and the evolution of eukaryotic genome content. Philos. Trans. B. 370: 20140331.
Fenwick G.D. 1984. Life-history tactics of brooding Crustacea. J. Exp. Mar. Biol. Ecol. 84: 247–264.
Garsmeur O., Schnable J.C., Almeida A., Jourda C., D'Hont A., Freeling M. 2014. Two evolutionarily distinct classes of paleopolyploidy. Mol. Biol. Evol. 31: 448–454.
Gibney E.R., Nolan C.M. 2010. Epigenetics and gene expression. Heredity, 105: 4–13.
Glazier D.S. 2021. Genome size Covaries more positively with propagule size than adult size: new insights into an old problem. Biology, 10: 270.
Gregory T.R. 2001. Coincidence, coevolution, or causation? DNA content, cell size, and the C-value enigma. Biol. Rev. 76(1): 65–101.
Gregory T.R. 2005. Genome size evolution in animals. In The Evolution of the Genome. Edited by T.R. Gregory. Acedemic Press. pp. 3–87.
Hultgren K.M., Chak S.T.C., Bjelajac J., Macdonald K.S. 2021. Correlated evolution of larval development, egg size and genome size across two genera of snapping shrimp. J. Evol. Biol. 00: 1–13.
Hultgren K.M., Hurt C., Anker A. 2014. Phylogenetic relationships within the snapping shrimp genus Synalpheus (Decapoda: Alpheidae). Mol. Phylogenet. Evol. 77: 116–125.
Hultgren K.M., Jeffery N.W., Moran A., Gregory T.R. 2018. Latitudinal variation in genome size in crustaceans. Biol. J. Linn. Soc. 123: 348–359.
Jablonka E. 2017. The evolutionary implications of epigenetic inheritance. Interface Focus, 7: 20160135.
Jeffery N.W., Gregory T.R. 2014. Genome size estimates for crustaceans using Feulgen image analysis densitometry of ethanol-preserved tissues. Cytom. Part A, 85: 862–868.
Jeffery N.W., Hultgren K.M., Chak S.T.C., Gregory T.R., Rubenstein D.R. 2016. Patterns of genome size variation in snapping shrimp. Genome, 59: 393–402.
Jimenez A.G., Kinsey S.T., Dillaman R.M., Kapraun D.F. 2010. Nuclear DNA content variation associated with muscle fiber hypertrophic growth in decapod crustaceans. Genome, 53: 161–171.
Lefébure T., Morvan C., Malard F., François C., Konecny-Dupré L. Guéguen L., et al. 2017. Less effective selection leads to larger genomes. Genome Res. 27: 1016–1028.
Martin J.W., Davis G.E. 2001. An updated classification of the recent Crustacea. Science series 39. Natural History Museum of Los Angeles Country, Los Angeles, CA. 124 pp.
Moraes I.R.R., Almeida A.O., Cobo V.J., Alves D.F.R., Davanso T.M., Castilho A.L. 2021. Biodiversity of caridean shrimps on rocky bottoms of two preserved islands on the southeastern Brazilian coast. Mar. Biol. Res. 16(8 –-631 9): 616–631.
Parry G.D. 1981. The meanings of r-and K-selection. Oecologia, 48: 260–264.
Pinheiro J., Bates D., DebRoy S., Sarkar D., Team R Core. 2020. nlme: linear and nonlinear mixed effects models. R package version 3.1-148. Available from https://CRAN.R-project.org/package=nlme.
Porter M.L., Pérez-Losada M., Crandall K.A. 2005. Model-based multi-locus estimation of decapod phylogeny and divergence times. Mol. Phylogenet. Evol. 37(2): 355–369.
Rambaut A., Drummond A.J., Xie D., Baele G., Suchard M.A. 2018. Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. 67(5): 901–904.
Rees D.J., Belzile C., Lè Ne Glé H., Dufresne F. 2008. Large genomes among caridean shrimp. Genome, 2(51): 159–163.
Rees D.J., Dufresne F., Glémet H., Belzile C. 2007. Amphipod genome sizes: first estimates for Arctic species reveal genomic giants. Genome, 50: 151–158.
Ríos R., Duffy J.E. 2007. A review of the sponge-dwelling snapping shrimp from Carrie Bow Cay, Belize, with description of Zuzalpheus, new genus, and six new species (Crustacea: Decapoda: Alpheidae). Zootaxa, 1602: 3–89.
Rubenstein D.R., McCleery B.V., Duffy J.E. 2008. Microsatellite development suggests evidence of polyploidy in the social sponge-dwelling snapping shrimp Zuzalpheus brooksi. Mol. Ecol. Res. 8: 890–894.
Santos R.C, Pescinelli R., Costa R.C. 2020. Description of the first zoeal stage of Synalpheus apioceros Coutière, 1909 (Caridea: Alpheidae), including a comparative analysis with larval morphology from the genus Synalpheus Spence Bate, 1888. Zootaxa, 4838(1): 71–82.
Stadler T. 2009. On incomplete sampling under birth–death models and connections to the sampling-based coalescent. J. Theor. Biol. 261(1): 58–66.
Summer A.T. 2003. Chromosomes, organization and function. Blackwell Publishing, North Berwicj, UK. 1st ed.p. 396.
Valdez L., Quiroga-Carmona M., D'Elía G. 2020. Genetic variation of the Chilean endemic long-haired mouse Abrothrix longipilis (Rodentia, Supramyomorpha, Cricetidae) in a geographical and environmental context. PeerJ, 8: e9517.
Vitturi R., Colomba M.S., Caputo V., Sparacio I., Barbieri R. 1997. High heterocromatin content in somatic chromosomes of two unrelated species of Diplopoda (Myriapoda). Chromosome Res. 5(6): 407–412.
Xavier P.L.P., Senhorini J.A., Pereira-Santos M., Fujimoto T., Shimoda E. Silva L. A., et al. 2017. A flow cytometry protocol to estimate DNA content in the yellowtail tetra Astyanax altiparanae. Front. Genet. 8: 1–8.

Supplementary material

Supplementary Material 1 (DOCX / 29.9 KB).

Information & Authors

Information

Published In

cover image Genome
Genome
Volume 65Number 8August 2022
Pages: 459 - 468

History

Received: 7 February 2022
Accepted: 1 June 2022
Accepted manuscript online: 2 August 2022
Version of record online: 22 August 2022

Permissions

Request permissions for this article.

Key Words

  1. C-value
  2. snapping shrimp
  3. Decapoda
  4. DNA content

Mots-clés

  1. valeur C
  2. crevettes pistolet
  3. Decapoda
  4. contenu en ADN

Authors

Affiliations

Universidade Estadual Paulista “Júlio de Mesquita Filho” (UNESP), LABIAQUA—Laboratório de Biologia de Invertebrados Aquáticos, Programa de Pós-Graduação em Ciências Biológicas (Zoologia), Instituto de Biociências de Botucatu, Rua Prof. Dr. Antônio Celso Wagner Zanin, 250, Distrito de Rubião Júnior, Botucatu 18618-689, SP, Brasil
Luis Miguel Pardo
Instituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, 5090000, Valdivia, Chile
Centro de Investigación Dinámica de Ecosistemas Marinos de Altas Latitudes (IDEAL), Valdivia–Punta Arenas, Chile, 5090000
Departamento de Biología, Universidad de La  Serena, La Serena, 1720256, Chile
Instituto de Investigación Multidisciplinar en Ciencia y Tecnología, 1720256, Universidad de La Serena, La Serena, Chile
Milena Regina Wolf
Universidade Estadual Paulista “Júlio de Mesquita Filho” (UNESP), LABIAQUA—Laboratório de Biologia de Invertebrados Aquáticos, Programa de Pós-Graduação em Ciências Biológicas (Zoologia), Instituto de Biociências de Botucatu, Rua Prof. Dr. Antônio Celso Wagner Zanin, 250, Distrito de Rubião Júnior, Botucatu 18618-689, SP, Brasil
George Shigueki Yasui
Department of Animal Reproduction—FMVZ, University of Sao Paulo, Avenida Prof. Dr. Orlando Marques de Paiva, 87, São Paulo 05508-270, SP, Brasil
Jaiber J. Solano-Iguaran https://orcid.org/0000-0002-1319-8568
Departamento de Salud Hidrobiológica, División de Investigación en Acuicultura, Instituto de Fomento Pesquero, 2361827, Puerto Montt, Chile
Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Casilla 567, Valdivia 5090000, Chile
Graziela Gorete Romagnoli
Department of Health Sciences, Oeste Paulista University—UNOESTE, Avenida Toto Pacheco, 2945, Zona Industrial, Jaú 17213-700, SP, Brasil
Kaio Cesar Chaboli Alevi
Laboratório de Parasitologia, Departamento de Ciências Biológicas, Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista “Júlio de Mesquita Filho”, FCFAR/UNESP, Rodovia Araraquara-Jaú km 1, Araraquara 14801-902, SP, Brasil
Antonio Leão Castilho
Universidade Estadual Paulista “Júlio de Mesquita Filho” (UNESP), LABIAQUA—Laboratório de Biologia de Invertebrados Aquáticos, Programa de Pós-Graduação em Ciências Biológicas (Zoologia), Instituto de Biociências de Botucatu, Rua Prof. Dr. Antônio Celso Wagner Zanin, 250, Distrito de Rubião Júnior, Botucatu 18618-689, SP, Brasil

Competing Interests

The authors declare there are no competing interests.

Metrics & Citations

Metrics

Other Metrics

Citations

Cite As

Export Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

There are no citations for this item

View Options

Get Access

Login options

Check if you access through your login credentials or your institution to get full access on this article.

Subscribe

Click on the button below to subscribe to Genome

Purchase options

Purchase this article to get full access to it.

Restore your content access

Enter your email address to restore your content access:

Note: This functionality works only for purchases done as a guest. If you already have an account, log in to access the content to which you are entitled.

View options

PDF

View PDF

Full Text

View Full Text

Media

Media

Other

Tables

Share Options

Share

Share the article link

Share on social media