Cookies Notification

We use cookies to improve your website experience. To learn about our use of cookies and how you can manage your cookie settings, please see our Cookie Policy.
×

Lactoferrin, a key molecule in immune and inflammatory processes

Publication: Biochemistry and Cell Biology
2 December 2011

Abstract

Lactoferrin (Lf) belongs to the family of antimicrobial molecules that constitute the principal defense line of nonvertebrate organisms. In human immunity, their roles are considerably extended, and actually exceed mere direct antimicrobial properties. As a result, Lf is involved in both innate and adaptive immunities where its modulating effects not only help the host fight against microbes but also protect the host against harmful effects of inflammation. Such beneficial effects have been noticed in studies using dietary Lf, without the experimenters always explaining the exact modes of action of Lf. Effects on mucosal and systemic immunities are indeed often observed, which make the roles of Lf tricky to decipher. It is now known that the immunomodulatory properties of Lf are due to its ability to interact with numerous cellular and molecular targets. At the cellular level, Lf modulates the migration, maturation, and functions of immune cells. At the molecular level, in addition to iron binding, interactions of Lf with a plethora of compounds, either soluble or cell-surface molecules, account for its modulatory properties. This paper reviews our current understanding of the mechanisms that explain the regulatory properties of Lf in immune and inflammatory processes.

Résumé

La lactoferrine (Lf) appartient à la famille des molécules antimicrobiennes constituant la principale ligne de défense des invertébrés. Chez l’Homme, leurs rôles dépassent largement les propriétés antimicrobiennes. En effet, la Lf est impliquée dans les immunités innée et acquise où ses effets modulateurs procurent à l’hôte une protection contre les microbes et les conséquences néfastes de l’inflammation. De tels effets ont été observés lors d’expérimentations utilisant la Lf dans l’alimentation, mais où les mécanismes d’action n’ont pas toujours pu être expliqués. Des effets sur les immunités mucosale et systémique ont en effet souvent été détectés, rendant les rôles de la Lf difficiles à préciser. Il est désormais admis que les propriétés immunomodulatrices de la Lf sont dues à sa capacité d’interaction avec de nombreuses cibles moléculaires et cellulaires. A l’échelle cellulaire, la Lf module la migration, la maturation et les fonctions des cellules immunitaires. A l’échelle moléculaire, les propriétés modulatrices de la Lf sont dues à sa capacité à fixer le fer, mais aussi et surtout à ses interactions avec de nombreuses cibles, solubles ou exprimées à la surface des cellules. Cette revue fait le point de nos connaissances sur les mécanismes pouvant expliquer les propriétés régulatrices de la Lf dans les processus immunitaires et inflammatoires.

Get full access to this article

View all available purchase options and get full access to this article.

References

Adams W.C., Bond E., Havenga M.J., Holterman L., Goudsmit J., Karlsson Hedestam G.B., et al. 2009. Adenovirus serotype 5 infects human dendritic cells via a coxsackievirus-adenovirus receptor-independent receptor pathway mediated by lactoferrin and DC-SIGN. J. Gen. Virol. 90(7): 1600–1610.
Afeltra A., Caccavo D., Ferri G.M., Addessi M.A., De Rosa F.G., Amoroso A., and Bonomo L. 1997. Expression of lactoferrin on human granulocytes: analysis with polyclonal and monoclonal antibodies. Clin. Exp. Immunol. 109(2): 279–285.
Akira S. and Hemmi H. 2003. Recognition of pathogen-associated molecular patterns by TLR family. Immunol. Lett. 85(2): 85–95.
Ando K., Hasegawa K., Shindo K., Furusawa T., Fujino T., Kikugawa K., et al. 2010. Human lactoferrin activates NF-κB through the Toll-like receptor 4 pathway while it interferes with the lipopolysaccharide-stimulated TLR4 signaling. FEBS J. 277(9): 2051–2066.
Annane D., Bellissant E., and Cavaillon J.M. 2005. Septic shock. Lancet, 365(9453): 63–78.
Appelmelk B.J., An Y.Q., Geerts M., Thijs B.G., de Boer H.A., MacLaren D.M., et al. 1994. Lactoferrin is a lipid A-binding protein. Infect. Immun. 62(6): 2628–2632.
Artym J., Zimecki M., and Kruzel M.L. 2003. Reconstitution of the cellular immune response by lactoferrin in cyclophosphamide-treated mice is correlated with renewal of T cell compartment. Immunobiology, 207(3): 197–205.
Artym J., Zimecki M., and Kruzel M.L. 2004. Effects of lactoferrin on IL-6 production by peritoneal and alveolar cells in cyclophosphamide-treated mice. J. Chemother. 16(2): 187–192.
Baker E.N. and Baker H.M. 2005. Molecular structure, binding properties and dynamics of lactoferrin. Cell. Mol. Life Sci. 62(22): 2531–2539.
Baveye S., Elass E., Mazurier J., and Legrand D. 2000a. Lactoferrin inhibits the binding of lipopolysaccharides to L-selectin and subsequent production of reactive oxygen species by neutrophils. FEBS Lett. 469(1): 5–8.
Baveye S., Elass E., Fernig D.G., Blanquart C., Mazurier J., and Legrand D. 2000b. Human lactoferrin interacts with soluble CD14 and inhibits expression of endothelial adhesion molecules, E-selectin and ICAM-1, induced by the CD14-lipopolysaccharide complex. Infect. Immun. 68(12): 6519–6525.
Bennett R.M. and Kokocinski T. 1978. Lactoferrin content of peripheral blood cells. Br. J. Haematol. 39(4): 509–521.
Bi B.Y., Liu J.L., Legrand D., Roche A.C., Capron M., Spik G., and Mazurier J. 1996. Internalization of human lactoferrin by the Jurkat human lymphoblastic T-cell line. Eur. J. Cell Biol. 69(3): 288–296.
Birgens H.S., Kristensen L.O., Borregaard N., Karle H., and Hansen N.E. 1988. Lactoferrin-mediated transfer of iron to intracellular ferritin in human monocytes. Eur. J. Haematol. 41(1): 52–57.
Borghesi L.A., Yamashita Y., and Kincade P.W. 1999. Heparan sulfate proteoglycans mediate interleukin-7-dependent B lymphopoiesis. Blood, 93(1): 140–148.
Bournazou I., Pound J.D., Duffin R., Bournazos S., Melville L.A., Brown S.B., et al. 2009. Apoptotic human cells inhibit migration of granulocytes via release of lactoferrin. J. Clin. Invest. 119(1): 20–32.
Bournazou I., Mackenzie K.J., Duffin R., Rossi A.G., and Gregory C.D. 2010. Inhibition of eosinophil migration by lactoferrin. Immunol. Cell Biol. 88(2): 220–223.
Brandenburg K., Jurgens G., Muller M., Fukuoka S., and Koch M.H. 2001. Biophysical characterization of lipopolysaccharide and lipid A inactivation by lactoferrin. Biol. Chem. 382(8): 1215–1225.
Breton-Gorius J., Mason D.Y., Buriot D., Vilde J.L., and Griscelli C. 1980. Lactoferrin deficiency as a consequence of a lack of specific granules in neutrophils from a patient with recurrent infections. Detection by immunoperoxidase staining for lactoferrin and cytochemical electron microscopy. Am. J. Pathol. 99(2): 413–428.
Britigan B.E., Serody J.S., Hayek M.B., Charniga L.M., and Cohen M.S. 1991. Uptake of lactoferrin by mononuclear phagocytes inhibits their ability to form hydroxyl radical and protects them from membrane autoperoxidation. J. Immunol. 147(12): 4271–4277.
Britigan B.E., Lewis T.S., Waldschmidt M., McCormick M.L., and Krieg A.M. 2001. Lactoferrin binds CpG-containing oligonucleotides and inhibits their immunostimulatory effects on human B cells. J. Immunol. 167(5): 2921–2928.
Broxmeyer H.E., Williams D.E., Hangoc G., Cooper S., Gentile P., Shen R.N., et al. 1987. The opposing actions in vivo on murine myelopoiesis of purified preparations of lactoferrin and the colony stimulating factors. Blood Cells, 13(1–2): 31–48.
Buderus S., Boone J., Lyerly D., and Lentze M.J. 2004. Fecal lactoferrin: a new parameter to monitor infliximab therapy. Dig. Dis. Sci. 49(6): 1036–1039.
Caccavo D., Sebastiani G.D., Di Monaco C., Guido F., Galeazzi M., Ferri G.M., et al. 1999. Increased levels of lactoferrin in synovial fluid but not in serum from patients with rheumatoid arthritis. Int. J. Clin. Lab. Res. 29(1): 30–35.
Chodaczek G., Zimecki M., Lukasiewicz J., and Lugowski C. 2006. A complex of lactoferrin with monophosphoryl lipid A is an efficient adjuvant of the humoral and cellular immune response in mice. Med. Microbiol. Immunol. (Berl.), 195(4): 207–216.
Chodaczek G., Zimecki M., Lukasiewicz J., and Lugowski C. 2008. Lactoferrin-monophosphoryl lipid A complex enhances immunity of mice to Plesiomonas shigelloides CNCTC 138/92. Acta Biochim. Pol. 55(1): 91–96.
Crouch S.P., Slater K.J., and Fletcher J. 1992. Regulation of cytokine release from mononuclear cells by the iron-binding protein lactoferrin. Blood, 80(1): 235–240.
Cumberbatch M., Bhushan M., Dearman R.J., Kimber I., and Griffiths C.E. 2003. IL-1β-induced Langerhans' cell migration and TNF-α production in human skin: regulation by lactoferrin. Clin. Exp. Immunol. 132(2): 352–359.
Curran C.S., Demick K.P., and Mansfield J.M. 2006. Lactoferrin activates macrophages via TLR4-dependent and -independent signaling pathways. Cell. Immunol. 242(1): 23–30.
Damiens E., El Yazidi I., Mazurier J., Elass-Rochard E., Duthille I., Spik G., and Boilly-Marer Y. 1998. Role of heparan sulphate proteoglycans in the regulation of human lactoferrin binding and activity in the MDA-MB-231 breast cancer cell line. Eur. J. Cell Biol. 77(4): 344–351.
de la Rosa G., Yang D., Tewary P., Varadhachary A., and Oppenheim J.J. 2008. Lactoferrin acts as an alarmin to promote the recruitment and activation of APCs and antigen-specific immune responses. J. Immunol. 180(10): 6868–6876.
Debanne M.T., Regoeczi E., Sweeney G.D., and Krestynski F. 1985. Interaction of human lactoferrin with the rat liver. Am. J. Physiol. 248(4 Pt 1): G463–G469.
Debbabi H., Dubarry M., Rautureau M., and Tome D. 1998. Bovine lactoferrin induces both mucosal and systemic immune response in mice. J. Dairy Res. 65(2): 283–293.
Delehedde M., Lyon M., Sergeant N., Rahmoune H., and Fernig D.G. 2001. Proteoglycans: pericellular and cell surface multireceptors that integrate external stimuli in the mammary gland. J. Mammary Gland Biol. Neoplasia, 6(3): 253–273.
Deriy L.V., Chor J., and Thomas L.L. 2000. Surface expression of lactoferrin by resting neutrophils. Biochem. Biophys. Res. Commun. 275(1): 241–246.
Dhennin-Duthille I., Masson M., Damiens E., Fillebeen C., Spik G., and Mazurier J. 2000. Lactoferrin upregulates the expression of CD4 antigen through the stimulation of the mitogen-activated protein kinase in the human lymphoblastic T Jurkat cell line. J. Cell. Biochem. 79(4): 583–593.
Dial E.J., Dohrman A.J., Romero J.J., and Lichtenberger L.M. 2005. Recombinant human lactoferrin prevents NSAID-induced intestinal bleeding in rodents. J. Pharm. Pharmacol. 57(1): 93–99.
Elass E., Masson M., Mazurier J., and Legrand D. 2002. Lactoferrin inhibits the lipopolysaccharide-induced expression and proteoglycan-binding ability of interleukin-8 in human endothelial cells. Infect. Immun. 70(4): 1860–1866.
Elass-Rochard E., Roseanu A., Legrand D., Trif M., Salmon V., Motas C., et al. 1995. Lactoferrin-lipopolysaccharide interaction: involvement of the 28-34 loop region of human lactoferrin in the high-affinity binding to Escherichia coli 055B5 lipopolysaccharide. Biochem. J. 312(Pt 3): 839–845.
Elass-Rochard E., Legrand D., Salmon V., Roseanu A., Trif M., Tobias P.S., et al. 1998. Lactoferrin inhibits the endotoxin interaction with CD14 by competition with the lipopolysaccharide-binding protein. Infect. Immun. 66(2): 486–491.
Elrod K.C., Moore W.R., Abraham W.M., and Tanaka R.D. 1997. Lactoferrin, a potent tryptase inhibitor, abolishes late-phase airway responses in allergic sheep. Am. J. Respir. Crit. Care Med. 156(2 Pt 1): 375–381.
Fillebeen C., Mitchell V., Dexter D., Benaissa M., Beauvillain J., Spik G., and Pierce A. 1999a. Lactoferrin is synthesized by mouse brain tissue and its expression is enhanced after MPTP treatment. Brain Res. Mol. Brain Res. 72(2): 183–194.
Fillebeen C., Descamps L., Dehouck M.P., Fenart L., Benaissa M., Spik G., et al. 1999b. Receptor-mediated transcytosis of lactoferrin through the blood–brain barrier. J. Biol. Chem. 274(11): 7011–7017.
Fischer R., Debbabi H., Dubarry M., Boyaka P., and Tome D. 2006. Regulation of physiological and pathological Th1 and Th2 responses by lactoferrin. Biochem. Cell Biol. 84(3): 303–311.
Fischer R., Debbabi H., Blais A., Dubarry M., Rautureau M., Boyaka P.N., and Tome D. 2007. Uptake of ingested bovine lactoferrin and its accumulation in adult mouse tissues. Int. Immunopharmacol. 7(10): 1387–1393.
Frydecka I., Zimecki M., Bocko D., Kosmaczewska A., Teodorowska R., Ciszak L., et al. 2002. Lactoferrin-induced up-regulation of zeta (zeta) chain expression in peripheral blood T lymphocytes from cervical cancer patients. Anticancer Res. 22(3): 1897–1901.
Gahr M., Speer C.P., Damerau B., and Sawatzki G. 1991. Influence of lactoferrin on the function of human polymorphonuclear leukocytes and monocytes. J. Leukoc. Biol. 49(5): 427–433.
Gliemann J. 1998. Receptors of the low density lipoprotein (LDL) receptor family in man. Multiple functions of the large family members via interaction with complex ligands. Biol. Chem. 379(8–9): 951–964.
Graham S.A., Antonopoulos A., Hitchen P.G., Haslam S.M., Dell A., Drickamer K., and Taylor M.E. 2011. Identification of neutrophil granule glycoproteins as Lewis(x)-containing ligands cleared by the scavenger receptor C-type lectin. J. Biol. Chem. 286(27): 24336–24349.
Greenberg D.E., Jiang Z.D., Steffen R., Verenker M.P., and DuPont H.L. 2002. Markers of inflammation in bacterial diarrhea among travelers, with a focus on enteroaggregative Escherichia coli pathogenicity. J. Infect. Dis. 185(7): 944–949.
Grey A., Banovic T., Zhu Q., Watson M., Callon K., Palmano K., et al. 2004. The low-density lipoprotein receptor-related protein 1 is a mitogenic receptor for lactoferrin in osteoblastic cells. Mol. Endocrinol. 18(9): 2268–2278.
Griffiths C.E., Cumberbatch M., Tucker S.C., Dearman R.J., Andrew S., Headon D.R., and Kimber I. 2001. Exogenous topical lactoferrin inhibits allergen-induced Langerhans cell migration and cutaneous inflammation in humans. Br. J. Dermatol. 144(4): 715–725.
Groot F., Geijtenbeek T.B., Sanders R.W., Baldwin C.E., Sanchez-Hernandez M., Floris R., et al. 2005. Lactoferrin prevents dendritic cell-mediated human immunodeficiency virus type 1 transmission by blocking the DC-SIGN–gp120 interaction. J. Virol. 79(5): 3009–3015.
Guillén C., McInnes I.B., Vaughan D., Speekenbrink A.B., and Brock J.H. 2000. The effects of local administration of lactoferrin on inflammation in murine autoimmune and infectious arthritis. Arthritis Rheum. 43(9): 2073–2080.
Guillén C., McInnes I.B., Vaughan D.M., Kommajosyula S., Van Berkel P.H., Leung B.P., et al. 2002. Enhanced Th1 response to Staphylococcus aureus infection in human lactoferrin-transgenic mice. J. Immunol. 168(8): 3950–3957.
Håversen L., Ohlsson B.G., Hahn-Zoric M., Hanson L.Å., and Mattsby-Baltzer I. 2002. Lactoferrin down-regulates the LPS-induced cytokine production in monocytic cells via NF-κ B. Cell. Immunol. 220(2): 83–95.
Hayashida K., Kaneko T., Takeuchi T., Shimizu H., Ando K., and Harada E. 2004. Oral administration of lactoferrin inhibits inflammation and nociception in rat adjuvant-induced arthritis. J. Vet. Med. Sci. 66(2): 149–154.
Hayworth J.L., Kasper K.J., Leon-Ponte M., Herfst C.A., Yue D., Brintnell W.C., et al. 2009. Attenuation of massive cytokine response to the staphylococcal enterotoxin B superantigen by the innate immunomodulatory protein lactoferrin. Clin. Exp. Immunol. 157(1): 60–70.
He J. and Furmanski P. 1995. Sequence specificity and transcriptional activation in the binding of lactoferrin to DNA. Nature, 373(6516): 721–724.
He S.H. and Xie H. 2004. Modulation of histamine release from human colon mast cells by protease inhibitors. World J. Gastroenterol. 10(3): 337–341.
He S., McEuen A.R., Blewett S.A., Li P., Buckley M.G., Leufkens P., and Walls A.F. 2003. The inhibition of mast cell activation by neutrophil lactoferrin: uptake by mast cells and interaction with tryptase, chymase and cathepsin G. Biochem. Pharmacol. 65(6): 1007–1015.
Herz J. and Strickland D.K. 2001. LRP: a multifunctional scavenger and signaling receptor. J. Clin. Invest. 108(6): 779–784.
Hwang S.-A. and Actor J.K. 2009. Lactoferrin modulation of BCG-infected dendritic cell functions. Int. Immunol. 21(10): 1185–1197.
Hwang S.-A., Kruzel M.L., and Actor J.K. 2005. Lactoferrin augments BCG vaccine efficacy to generate T helper response and subsequent protection against challenge with virulent Mycobacterium tuberculosis. Int. Immunopharmacol. 5(3): 591–599.
Hwang S.-A., Kruzel M.L., and Actor J.K. 2009. Influence of bovine lactoferrin on expression of presentation molecules on BCG-infected bone marrow derived macrophages. Biochimie, 91(1): 76–85.
Iigo M., Shimamura M., Matsuda E., Fujita K., Nomoto H., Satoh J., et al. 2004. Orally administered bovine lactoferrin induces caspase-1 and interleukin-18 in the mouse intestinal mucosa: a possible explanation for inhibition of carcinogenesis and metastasis. Cytokine, 25(1): 36–44.
Ishii K., Takamura N., Shinohara M., Wakui N., Shin H., Sumino Y., et al. 2003. Long-term follow-up of chronic hepatitis C patients treated with oral lactoferrin for 12 months. Hepatol. Res. 25(3): 226–233.
Ismail M. and Brock J.H. 1993. Binding of lactoferrin and transferrin to the human promonocytic cell line U937. Effect on iron uptake and release. J. Biol. Chem. 268(29): 21618–21625.
Jenssen H. and Hancock R.E. 2009. Antimicrobial properties of lactoferrin. Biochimie, 91(1): 19–29.
Jerala R. 2007. Structural biology of the LPS recognition. Int. J. Med. Microbiol. 297(5): 353–363.
Judd T.A., Day A.S., Lemberg D.A., Turner D., and Leach S.T. 2011. Update of fecal markers of inflammation in inflammatory bowel disease. J. Gastroenterol. Hepatol. 26(10): 1493–1499.
Kai K., Komine K., Komine Y., Kuroishi T., Kozutsumi T., Kobayashi J., et al. 2002. Lactoferrin stimulates A Staphylococcus aureus killing activity of bovine phagocytes in the mammary gland. Microbiol. Immunol. 46(3): 187–194.
Kallenberg C.G.M., Mulder A.H.L., and Tervaert J.W.C. 1992. Antineutrophil cytoplasmic antibodies: a still-growing class of autoantibodies in inflammatory disorders. Am. J. Med. 93(6): 675–682.
Kane S.V., Sandborn W.J., Rufo P.A., Zholudev A., Boone J., Lyerly D., et al. 2003. Fecal lactoferrin is a sensitive and specific marker in identifying intestinal inflammation. Am. J. Gastroenterol. 98(6): 1309–1314.
Kijlstra A. and Jeurissen S.H. 1982. Modulation of classical C3 convertase of complement by tear lactoferrin. Immunology, 47(2): 263–270.
Kimber I., Cumberbatch M., Dearman R.J., Headon D.R., Bhushan M., and Griffiths C.E. 2002. Lactoferrin: influences on Langerhans cells, epidermal cytokines, and cutaneous inflammation. Biochem. Cell Biol. 80(1): 103–107.
Kobayashi S., Abe Y., Inanami O., Oda S., Yamauchi K., Hankanga C., et al. 2011. Oral administration of bovine lactoferrin upregulates neutrophil functions in a dog with familial β2-integrin-related neutrophil dysfunction. Vet. Immunol. Immunopathol. 143(1–2): 155–161.
Konishi M., Iwasa M., Yamauchi K., Sugimoto R., Fujita N., Kobayashi Y., et al. 2006. Lactoferrin inhibits lipid peroxidation in patients with chronic hepatitis C. Hepatol. Res. 36(1): 27–32.
Kruzel M.L., Harari Y., Mailman D., Actor J.K., and Zimecki M. 2002. Differential effects of prophylactic, concurrent and therapeutic lactoferrin treatment on LPS-induced inflammatory responses in mice. Clin. Exp. Immunol. 130(1): 25–31.
Kruzel M.L., Bacsi A., Choudhury B., Sur S., and Boldogh I. 2006. Lactoferrin decreases pollen antigen-induced allergic airway inflammation in a murine model of asthma. Immunology, 119(2): 159–166.
Kruzel M.L., Actor J.K., Radak Z., Bacsi A., Saavedra-Molina A., and Boldogh I. 2010. Lactoferrin decreases LPS-induced mitochondrial dysfunction in cultured cells and in animal endotoxemia model. Innate Immun. 16(2): 67–79.
Kuhara T., Iigo M., Itoh T., Ushida Y., Sekine K., Terada N., et al. 2000. Orally administered lactoferrin exerts an antimetastatic effect and enhances production of IL-18 in the intestinal epithelium. Nutr. Cancer, 38(2): 192–199.
Kuhara T., Yamauchi K., Tamura Y., and Okamura H. 2006. Oral administration of lactoferrin increases NK cell activity in mice via increased production of IL-18 and type I IFN in the small intestine. J. Interferon Cytokine Res. 26(7): 489–499.
Kuhara T., Yamauchi K., and Iwatsuki K. 2011. Bovine lactoferrin induces interleukin-11 production in a hepatitis mouse model and human intestinal myofibroblasts. Eur. J. Nutr., In press.
Kurose I., Yamada T., Wolf R., and Granger D.N. 1994. P-selectin-dependent leukocyte recruitment and intestinal mucosal injury induced by lactoferrin. J. Leukoc. Biol. 55(6): 771–777.
Larsen A., Hovdenak N., Karlsdottir A., Wentzel-Larsen T., Dahl O., and Fagerhol M.K. 2004. Faecal calprotectin and lactoferrin as markers of acute radiation proctitis: a pilot study of eight stool markers. Scand. J. Gastroenterol. 39(11): 1113–1118.
Lee W.J., Farmer J.L., Hilty M., and Kim Y.B. 1998. The protective effects of lactoferrin feeding against endotoxin lethal shock in germfree piglets. Infect. Immun. 66(4): 1421–1426.
Legrand D. and Mazurier J. 2010. A critical review of the roles of host lactoferrin in immunity. Biometals, 23(3): 365–376.
Legrand D., van Berkel P.H., Salmon V., van Veen H.A., Slomianny M.C., Nuijens J.H., and Spik G. 1997. The N-terminal Arg2, Arg3 and Arg4 of human lactoferrin interact with sulphated molecules but not with the receptor present on Jurkat human lymphoblastic T-cells. Biochem. J. 327(3): 841–846.
Legrand D., Vigie K., Said E.A., Elass E., Masson M., Slomianny M.C., et al. 2004. Surface nucleolin participates in both the binding and endocytosis of lactoferrin in target cells. Eur. J. Biochem. 271(2): 303–317.
Legrand D., Elass E., Carpentier M., and Mazurier J. 2006. Interactions of lactoferrin with cells involved in immune function. Biochem. Cell Biol. 84(3): 282–290.
Legrand D., Pierce A., Elass E., Carpentier M., Mariller C., and Mazurier J. 2008. Lactoferrin structure and functions. Adv. Exp. Med. Biol. 606: 163–194.
Leveugle B., Mazurier J., Legrand D., Mazurier C., Montreuil J., and Spik G. 1993. Lactotransferrin binding to its platelet receptor inhibits platelet aggregation. Eur. J. Biochem. 213(3): 1205–1211.
Lobie P.E., Mertani H., Morel G., Morales-Bustos O., Norstedt G., and Waters M.J. 1994. Receptor-mediated nuclear translocation of growth hormone. J. Biol. Chem. 269(33): 21330–21339.
Lönnerdal B. 2009. Nutritional roles of lactoferrin. Curr. Opin. Clin. Nutr. Metab. Care, 12(3): 293–297.
Losfeld M.-E., Khoury D.E., Mariot P., Carpentier M., Krust B., Briand J.-P., et al. 2009. The cell surface expressed nucleolin is a glycoprotein that triggers calcium entry into mammalian cells. Exp. Cell Res. 315(2): 357–369.
Losfeld M.-E., Leroy A., Coddeville B., Carpentier M., Mazurier J., and Legrand D. 2011. N-glycosylation influences the structure and self-association abilities of recombinant nucleolin. FEBS J. 278(14): 2552–2564.
Maacks S., Yuan H.-Z., and Wood W.G. 1989. Development and evaluation of luminescence-based sandwich assay for plasma lactoferrin as a marker for sepsis and bacterial infections in pediatric medicine. J. Biolumines. Chemilumines. 3(4): 221–226.
Machnicki M., Zimecki M., and Zagulski T. 1993. Lactoferrin regulates the release of tumour necrosis factor alpha and interleukin 6 in vivo. Int. J. Exp. Pathol. 74(5): 433–439.
Malet A., Bournaud E., Lan A., Mikogami T., Tome D., and Blais A. 2011. Bovine lactoferrin improves bone status of ovariectomized mice via immune function modulation. Bone, 48(5): 1028–1035.
Maneva A.I., Sirakov L.M., and Manev V.V. 1983. Lactoferrin binding to neutrophilic polymorphonuclear leucocytes. Int. J. Biochem. 15(7): 981–984.
Mann D.M., Romm E., and Migliorini M. 1994. Delineation of the glycosaminoglycan-binding site in the human inflammatory response protein lactoferrin. J. Biol. Chem. 269(38): 23661–23667.
Masson P.L., Heremans J.F., and Schonne E. 1969. Lactoferrin, an iron-binding protein in neutrophilic leukocytes. J. Exp. Med. 130(3): 643–658.
Mattsby-Baltzer I., Roseanu A., Motas C., Elverfors J., Engberg I., and Hanson L.A. 1996. Lactoferrin or a fragment thereof inhibits the endotoxin-induced interleukin-6 response in human monocytic cells. Pediatr. Res. 40(2): 257–262.
Mazurier J., Lhoste J.M., Montreuil J., and Spik G. 1983. Comparative study of the iron-binding properties of human transferrins. II. Electron paramagnetic resonance of mixed metal complexes of human lactotransferrin. Biochim. Biophys. Acta, 745(1): 44–49.
Mazurier J., Legrand D., Hu W.L., Montreuil J., and Spik G. 1989. Expression of human lactotransferrin receptors in phytohemagglutinin-stimulated human peripheral blood lymphocytes. Isolation of the receptors by antiligand-affinity chromatography. Eur. J. Biochem. 179(2): 481–487.
McAbee D.D., Jiang X., and Walsh K.B. 2000. Lactoferrin binding to the rat asialoglycoprotein receptor requires the receptor's lectin properties. Biochem. J. 348(1): 113–117.
Meilinger M., Haumer M., Szakmary K.A., Steinbock F., Scheiber B., Goldenberg H., and Huettinger M. 1995. Removal of lactoferrin from plasma is mediated by binding to low density lipoprotein receptor-related protein/α 2-macroglobulin receptor and transport to endosomes. FEBS Lett. 360(1): 70–74.
Miller J.D., Stevens E.T., Smith D.R., Wight T.N., and Wrenshall L.E. 2008. Perlecan: a major IL-2-binding proteoglycan in murine spleen. Immunol. Cell Biol. 86(2): 192–199.
Miyauchi H., Hashimoto S., Nakajima M., Shinoda I., Fukuwatari Y., and Hayasawa H. 1998. Bovine lactoferrin stimulates the phagocytic activity of human neutrophils: identification of its active domain. Cell. Immunol. 187(1): 34–37.
Miyazawa K., Mantel C., Lu L., Morrison D.C., and Broxmeyer H.E. 1991. Lactoferrin-lipopolysaccharide interactions. Effect on lactoferrin binding to monocyte/macrophage-differentiated HL-60 cells. J. Immunol. 146(2): 723–729.
Montreuil J., Tonnelat J., and Mullet S. 1960. [Preparation and properties of lactosiderophilin (lactotransferrin) of human milk.]. Biochim. Biophys. Acta, 45: 413–421.
Mukaida N. 2000. Interleukin-8 : an expanding universe beyond neutrophil chemotaxis and activation. Int. J. Hematol. 72(4): 391–398.
Muramatsu T. and Muramatsu H. 2008. Glycosaminoglycan-binding cytokines as tumor markers. Proteomics, 8(16): 3350–3359.
Na Y.J., Han S.B., Kang J.S., Yoon Y.D., Park S.K., Kim H.M., et al. 2004. Lactoferrin works as a new LPS-binding protein in inflammatory activation of macrophages. Int. Immunopharmacol. 4(9): 1187–1199.
Nielsen S.M., Hansen G.H., and Danielsen E.M. 2010. Lactoferrin targets T cells in the small intestine. J. Gastroenterol. 45(11): 1121–1128.
Ochoa T.J. and Clearly T.G. 2004. Lactoferrin disruption of bacterial type III secretion systems. Biometals, 17(3): 257–260.
Oh S.M., Hahm D.H., Kim I.H., and Choi S.Y. 2001. Human neutrophil lactoferrin trans-activates the matrix metalloproteinase 1 gene through stress-activated MAPK signaling modules. J. Biol. Chem. 276(45): 42575–42579.
Oh S.M., Lee S.H., Lee B.J., Pyo C.W., Yoo N.K., Lee S.Y., et al. 2007. A distinct role of neutrophil lactoferrin in RelA/p65 phosphorylation on Ser536 by recruiting TNF receptor-associated factors to IκB kinase signaling complex. J. Immunol. 179(9): 5686–5692.
Paesano R., Berlutti F., Pietropaoli M., Pantanella F., Pacifici E., Goolsbee W., and Valenti P. 2010. Lactoferrin efficacy versus ferrous sulfate in curing iron deficiency and iron deficiency anemia in pregnant women. Biometals, 23(3): 411–417.
Pejler G. 1996. Lactoferrin regulates the activity of heparin proteoglycan-bound mast cell chymase: characterization of the binding of heparin to lactoferrin. Biochem. J. 320(Pt 3): 897–903.
Puddu P., Carollo M.G., Belardelli F., Valenti P., and Gessani S. 2007. Role of endogenous interferon and LPS in the immunomodulatory effects of bovine lactoferrin in murine peritoneal macrophages. J. Leukoc. Biol. 82(2): 347–353.
Puddu P., Valenti P., and Gessani S. 2009. Immunomodulatory effects of lactoferrin on antigen presenting cells. Biochimie, 91(1): 11–18.
Puddu P., Latorre D., Valenti P., and Gessani S. 2010. Immunoregulatory role of lactoferrin-lipopolysaccharide interactions. Biometals, 23(3): 387–397.
Puddu P., Latorre D., Carollo M., Catizone A., Ricci G., Valenti P., and Gessani S. 2011. Bovine lactoferrin counteracts Toll-like receptor mediated activation signals in antigen presenting cells. PLoS ONE, 6(7): e22504.
Qadri F., Alam M.S., Nishibuchi M., Rahman T., Alam N.H., Chisti J., et al. 2003. Adaptive and inflammatory immune responses in patients infected with strains of Vibrio parahaemolyticus. J. Infect. Dis. 187(7): 1085–1096.
Rainard P. 1993. Activation of the classical pathway of complement by binding of bovine lactoferrin to unencapsulated Streptococcus agalactiae. Immunology, 79(4): 648–652.
Reghunathan R., Jayapal M., Hsu L.Y., Chng H.H., Tai D., Leung B.P., and Melendez A.J. 2005. Expression profile of immune response genes in patients with Severe Acute Respiratory Syndrome. BMC Immunol. 6(1): 2.
Rycyzyn M.A. and Clevenger C.V. 2002. The intranuclear prolactin/cyclophilin B complex as a transcriptional inducer. Proc. Natl. Acad. Sci. U.S.A. 99(10): 6790–6795.
Samuelsen Ø., Haukland H.H., Ulvatne H., and Vorland L.H. 2004. Anti-complement effects of lactoferrin-derived peptides. FEMS Immunol. Med. Microbiol. 41(2): 141–148.
Sasaki Y., Otsuki K., Hasegawa A., Sawada M., Chiba H., Negishi M., et al. 2004. Preventive effect of recombinant human lactoferrin on lipopolysaccharide-induced preterm delivery in mice. Acta Obstet. Gynecol. Scand. 83(11): 1035–1038.
Sawatzki G. and Rich I.N. 1989. Lactoferrin stimulates colony stimulating factor production in vitro and in vivo. Blood Cells, 15(2): 371–385.
Schaible U.E., Collins H.L., Priem F., and Kaufmann S.H. 2002. Correction of the iron overload defect in β-2-microglobulin knockout mice by lactoferrin abolishes their increased susceptibility to tuberculosis. J. Exp. Med. 196(11): 1507–1513.
Schwartz N. 2000. Biosynthesis and regulation of expression of proteoglycans. Front. Biosci. 5: D649–D655.
Sfeir R.M., Dubarry M., Boyaka P.N., Rautureau M., and Tome D. 2004. The mode of oral bovine lactoferrin administration influences mucosal and systemic immune responses in mice. J. Nutr. 134(2): 403–409.
Shibata Y., Muramatsu T., Hirai M., Inui T., Kimura T., Saito H., et al. 2002. Nuclear targeting by the growth factor midkine. Mol. Cell. Biol. 22(19): 6788–6796.
Shimamura M., Yamamoto Y., Ashino H., Oikawa T., Hazato T., Tsuda H., and Iigo M. 2004. Bovine lactoferrin inhibits tumor-induced angiogenesis. Int. J. Cancer, 111(1): 111–116.
Shimizu K., Matsuzawa H., Okada K., Tazume S., Dosako S., Kawasaki Y., et al. 1996. Lactoferrin-mediated protection of the host from murine cytomegalovirus infection by a T-cell-dependent augmentation of natural killer cell activity. Arch. Virol. 141(10): 1875–1889.
Shinoda I., Takase M., Fukuwatari Y., Shimamura S., Koller M., and Konig W. 1996. Effects of lactoferrin and lactoferricin on the release of interleukin 8 from human polymorphonuclear leukocytes. Biosci. Biotechnol. Biochem. 60(3): 521–523.
Siao S.C., Li K.J., Hsieh S.C., Wu C.H., Lu M.C., Tsai C.Y., and Yu C.L. 2011. Tamm-Horsfall glycoprotein enhances PMN phagocytosis by binding to cell surface-expressed lactoferrin and cathepsin G that activates MAP kinase pathway. Molecules, 16(3): 2119–2134.
Smith W.B., Gamble J.R., Clark-Lewis I., and Vadas M.A. 1991. Interleukin-8 induces neutrophil transendothelial migration. Immunology, 72(1): 65–72.
Sorimachi K., Akimoto K., Hattori Y., Ieiri T., and Niwa A. 1997. Activation of macrophages by lactoferrin: secretion of TNF-α, IL-8 and NO. Biochem. Mol. Biol. Int. 43(1): 79–87.
Spadaro M., Caorsi C., Ceruti P., Varadhachary A., Forni G., Pericle F., and Giovarelli M. 2008. Lactoferrin, a major defense protein of innate immunity, is a novel maturation factor for human dendritic cells. FASEB J. 22(8): 2747–2757.
Suzuki Y.A. and Lönnerdal B. 2002. Characterization of mammalian receptors for lactoferrin. Biochem. Cell Biol. 80(1): 75–80.
Suzuki Y.A., Shin K., and Lönnerdal B. 2001. Molecular cloning and functional expression of a human intestinal lactoferrin receptor. Biochemistry, 40(51): 15771–15779.
Suzuki Y.A., Lopez V., and Lönnerdal B. 2005. Mammalian lactoferrin receptors: structure and function. Cell. Mol. Life Sci. 62(22): 2560–2575.
Suzuki Y.A., Wong H., Ashida K.Y., Schryvers A.B., and Lönnerdal B. 2008. The N1 domain of human lactoferrin is required for internalization by caco-2 cells and targeting to the nucleus. Biochemistry, 47(41): 10915–10920.
Szuster-Ciesielska A., Kaminska T., and Kandefer-Szerszen M. 1995. Phagocytosis-enhancing effect of lactoferrin on bovine peripheral blood monocytes in vitro and in vivo. Arch. Vet. Pol. 35(1–2): 63–71.
Takakura N., Wakabayashi H., Ishibashi H., Yamauchi K., Teraguchi S., Tamura Y., et al. 2004. Effect of orally administered bovine lactoferrin on the immune response in the oral candidiasis murine model. J. Med. Microbiol. 53(6): 495–500.
Takayama Y., Takahashi H., Mizumachi K., and Takezawa T. 2003. Low density lipoprotein receptor-related protein (LRP) is required for lactoferrin-enhanced collagen gel contractile activity of human fibroblasts. J. Biol. Chem. 278(24): 22112–22118.
Taylor K.R. and Gallo R.L. 2006. Glycosaminoglycans and their proteoglycans: host-associated molecular patterns for initiation and modulation of inflammation. FASEB J. 20(1): 9–22.
Teegen B., Niemann S., Probst C., Schlumberger W., Stocker W., and Komorowski L. 2009. DNA-bound lactoferrin is the major target for antineutrophil perinuclear cytoplasmic antibodies in ulcerative colitis. Ann. N. Y. Acad. Sci. 1173(1): 161–165.
Teng C.T. 2010. Lactoferrin: the path from protein to gene. Biometals, 23(3): 359–364.
Togawa J., Nagase H., Tanaka K., Inamori M., Nakajima A., Ueno N., et al. 2002. Oral administration of lactoferrin reduces colitis in rats via modulation of the immune system and correction of cytokine imbalance. J. Gastroenterol. Hepatol. 17(12): 1291–1298.
Valenti P. and Antonini G. 2005. Lactoferrin: an important host defence against microbial and viral attack. Cell. Mol. Life Sci. 62(22): 2576–2587.
van Berkel P.H., Geerts M.E., van Veen H.A., Mericskay M., de Boer H.A., and Nuijens J.H. 1997. N-terminal stretch Arg2, Arg3, Arg4 and Arg5 of human lactoferrin is essential for binding to heparin, bacterial lipopolysaccharide, human lysozyme and DNA. Biochem. J. 328(1): 145–151.
van der Does A.M., Bogaards S.J.P., Jonk L., Wulferink M., Velders M.P., and Nibbering P.H. 2010. The human lactoferrin-derived peptide hLF1-11 primes monocytes for an enhanced TLR-mediated immune response. Biometals, 23(3): 493–505.
van Hooijdonk A.C., Kussendrager K.D., and Steijns J.M. 2000. In vivo antimicrobial and antiviral activity of components in bovine milk and colostrum involved in non-specific defence. Br. J. Nutr. 84(Suppl. 1): S127–S134.
Wakabayashi H., Takakura N., Teraguchi S., and Tamura Y. 2003. Lactoferrin feeding augments peritoneal macrophage activities in mice intraperitoneally injected with inactivated Candida albicans. Microbiol. Immunol. 47(1): 37–43.
Wakabayashi H., Kurokawa M., Shin K., Teraguchi S., Tamura Y., and Shiraki K. 2004. Oral lactoferrin prevents body weight loss and increases cytokine responses during herpes simplex virus type 1 infection of mice. Biosci. Biotechnol. Biochem. 68(3): 537–544.
Ward P.P., Mendoza-Meneses M., Park P.W., and Conneely O.M. 2008. Stimulus-dependent impairment of the neutrophil oxidative burst response in lactoferrin-deficient mice. Am. J. Pathol. 172(4): 1019–1029.
Wiesner J. and Vilcinskas A. 2010. Antimicrobial peptides: the ancient arm of the human immune system. Virulence, 1(5): 440–464.
Willnow T.E., Goldstein J.L., Orth K., Brown M.S., and Herz J. 1992. Low density lipoprotein receptor-related protein and gp330 bind similar ligands, including plasminogen activator-inhibitor complexes and lactoferrin, an inhibitor of chylomicron remnant clearance. J. Biol. Chem. 267(36): 26172–26180.
Yamano E., Miyauchi M., Furusyo H., Kawazoe A., Ishikado A., Makino T., et al. 2010. Inhibitory effects of orally administrated liposomal bovine lactoferrin on the LPS-induced osteoclastogenesis. Lab. Invest. 90(8): 1236–1246.
Yamauchi K., Wakabayashi H., Hashimoto S., Teraguchi S., Hayasawa H., and Tomita M. 1998. Effects of orally administered bovine lactoferrin on the immune system of healthy volunteers. Adv. Exp. Med. Biol. 443: 261–265.
Yamauchi K., Wakabayashi H., Shin K., and Takase M. 2006. Bovine lactoferrin: benefits and mechanism of action against infections. Biochem. Cell Biol. 84(3): 291–296.
Yang D., de la Rosa G., Tewary P., and Oppenheim J.J. 2009. Alarmins link neutrophils and dendritic cells. Trends Immunol. 30(11): 531–537.
Yeom M., Park J., Lee B., Choi S.Y., Kim K.S., Lee H., and Hahm D.H. 2011. Lactoferrin inhibits the inflammatory and angiogenic activation of bovine aortic endothelial cells. Inflamm. Res. 60(5): 475–482.
Zagulski T., Lipinski P., Zagulska A., Broniek S., and Jarzabek Z. 1989. Lactoferrin can protect mice against a lethal dose of Escherichia coli in experimental infection in vivo. Br. J. Exp. Pathol. 70(6): 697–704.
Zhang G.H., Mann D.M., and Tsai C.M. 1999. Neutralization of endotoxin in vitro and in vivo by a human lactoferrin-derived peptide. Infect. Immun. 67(3): 1353–1358.
Ziere G.J., Kruijt J.K., Bijsterbosch M.K., and van Berkel T.J. 1996. Recognition of lactoferrin and aminopeptidase M-modified lactoferrin by the liver: involvement of proteoglycans and the remnant receptor. Biochem. J. 313(1): 289–295.
Zimecki M., Mazurier J., Machnicki M., Wieczorek Z., Montreuil J., and Spik G. 1991. Immunostimulatory activity of lactotransferrin and maturation of CD4- CD8- murine thymocytes. Immunol. Lett. 30(1): 119–123.
Zimecki M., Mazurier J., Spik G., and Kapp J.A. 1995. Human lactoferrin induces phenotypic and functional changes in murine splenic B cells. Immunology, 86(1): 122–127.
Zimecki M., Kocieba M., and Kruzel M. 2002. Immunoregulatory activities of lactoferrin in the delayed type hypersensitivity in mice are mediated by a receptor with affinity to mannose. Immunobiology, 205(1): 120–131.
Zimecki M., Dawiskiba J., Zawirska B., Krawczyk Z., and Kruzel M. 2003. Bovine lactoferrin decreases histopathological changes in the liver and regulates cytokine production by splenocytes of obstructive jaundiced rats. Inflamm. Res. 52(7): 305–310.
Zimecki M., Artym J., Chodaczek G., Kocieba M., and Kruzel M.L. 2004. Protective effects of lactoferrin in Escherichia coli-induced bacteremia in mice: relationship to reduced serum TNF alpha level and increased turnover of neutrophils. Inflamm. Res. 53(7): 292–296.
Zimecki M., Artym J., and Kocieba M. 2009. Endogenous steroids are responsible for lactoferrin-induced myelopoiesis in mice. Pharmacol. Rep. 61(4): 705–710.
Zweiman B., Kucich U., Shalit M., Von Allmen C., Moskovitz A., Weinbaum G., and Atkins P.C. 1990. Release of lactoferrin and elastase in human allergic skin reactions. J. Immunol. 144(10): 3953–3960.

Information & Authors

Information

Published In

cover image Biochemistry and Cell Biology
Biochemistry and Cell Biology
Volume 90Number 3June 2012
Pages: 252 - 268

History

Received: 27 July 2011
Revision received: 28 August 2011
Accepted: 12 September 2011
Version of record online: 2 December 2011

Notes

This article is part of Special Issue entitled Lactoferrin and has undergone the Journal’s usual peer review process.

Permissions

Request permissions for this article.

Key Words

  1. lactoferrin
  2. immunity
  3. inflammation
  4. milk protein

Mots-clés

  1. lactoferrine
  2. immunité
  3. inflammation
  4. protéine du lait

Authors

Affiliations

Dominique Legrand
UMR 8576 CNRS / Université des Sciences et Technologies de Lille, Unité de Glycobiologie Structurale et Fonctionnelle, IFR 147, F-59650 Villeneuve d’Ascq, France.

Metrics & Citations

Metrics

Other Metrics

Citations

Cite As

Export Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

1. Bovine lactoferrin inhibits inflammatory response and apoptosis in lipopolysaccharide-induced acute lung injury by targeting the PPAR-γ pathway
2. Functional consequence of Iron dyshomeostasis and ferroptosis in systemic lupus erythematosus and lupus nephritis
3. Unlocking the power of Lactoferrin: Exploring its role in early life and its preventive potential for adult chronic diseases
4. Evaluation of in vitro antirotaviral activity of lactoferrin from different species using a human intestinal model
5. Lactoferrin, the Moonlighting Protein of Innate Immunity
6. Human milk: From complex tailored nutrition to bioactive impact on child cognition and behavior
7. Modulation of TDM-induced granuloma pathology by human lactoferrin: a persistent effect in mice
8. Effects of dietary supplementation of bovine lactoferrin on growth performance, immune function and intestinal health in weaning piglets
9. The influence of subclinical mastitis on the protein composition and protease activities of raw milk from lactating Thai-crossbred dairy cows
10. Lactoferrin affects in vitro and in vivo fertilization and implantation in rats
11. Exploring the biogenic peptide’s potential in combating bacterial zoonosis: application and future prospect
12. Myopia Is Suppressed by Digested Lactoferrin or Holo-Lactoferrin Administration
13. Human lactoferrin modulates gene expression of the cytokine IL4 and the receptor TLR4 in the rat spleen under stress and upon the lipopolysaccharide administration
14. Antimicrobial Peptides with Rigid Linkers against Gram-Negative Bacteria by Targeting Lipopolysaccharide
15. Experimental microbiological substantiation to the development of domestic preparations of lactoferrin protein for dentistry and maxillofacial surgery
16. Experimental microbiological substantiation to the development of domestic preparations of lactoferrin protein for dentistry and maxillofacial surgery
17. The dual interaction of antimicrobial peptides on bacteria and cancer cells; mechanism of action and therapeutic strategies of nanostructures
18. Recombinant Human Lactoferrin Reduces Inflammation and Increases Fluoroquinolone Penetration to Primary Granulomas During Mycobacterial Infection of C57Bl/6 Mice
19. Can Lactoferrin, a Natural Mammalian Milk Protein, Assist in the Battle against COVID-19?
20. Lactoferrin for iron-deficiency anemia in children with inflammatory bowel disease: a clinical trial
21. Lactoferrin-Conjugated Nanoparticles as New Antivirals
22. Inflammatory bowel disease biomarkers
23. Lactoferrin improves hepatic insulin resistance and pancreatic dysfunction in high-fat diet and streptozotocin-induced diabetic mice
24. Gastrointestinal disorder biomarkers
25. Lactoferrin as Immune-Enhancement Strategy for SARS-CoV-2 Infection in Alzheimer’s Disease Patients
26. Lactoferrin of oral fluid is normal and in Alzheimer’s disease: laboratory and diagnostic aspects (review of literature)
27. Lactoferrin Induces Erythropoietin Synthesis and Rescues Cognitive Functions in the Offspring of Rats Subjected to Prenatal Hypoxia
28. Whey proteins and peptides in health-promoting functions – A review
29. Lactoferrin modified by hypohalous acids: Partial loss in activation of human neutrophils
30. Antimicrobial and Prebiotic Activity of Lactoferrin in the Female Reproductive Tract: A Comprehensive Review
31. Lactoferrin: Cytokine Modulation and Application in Clinical Practice
32. Disease Tolerance during Viral-Bacterial Co-Infections
33. The Functional Role of Lactoferrin in Intestine Mucosal Immune System and Inflammatory Bowel Disease
34. Salivary Lactoferrin Expression in a Mouse Model of Alzheimer’s Disease
35. Osteogenic effect of polymethyl methacrylate bone cement with surface modification of lactoferrin
36. Potential Protective Protein Components of Cow’s Milk against Certain Tumor Entities
37. Breast Milk: A Source of Functional Compounds with Potential Application in Nutrition and Therapy
38. Lactoferrin reduces mycobacterial M1-type inflammation induced with trehalose 6,6′-dimycolate and facilitates the entry of fluoroquinolone into granulomas1
39. Lactoferrin, a versatile natural antimicrobial glycoprotein that modulates the host’s innate immunity1
40. Binding of lactoferrin to the surface of low-density lipoproteins modified by myeloperoxidase prevents intracellular cholesterol accumulation by human blood monocytes1
41. Inclusion of Oat and Yeast Culture in Sow Gestational and Lactational Diets Alters Immune and Antimicrobial Associated Proteins in Milk
42. Cancer Related Anemia: An Integrated Multitarget Approach and Lifestyle Interventions
43. Oral Bovine Milk Lactoferrin Administration Suppressed Myopia Development through Matrix Metalloproteinase 2 in a Mouse Model
44. Nutritional and Behavioral Approaches to Body Composition and Low-Grade Chronic Inflammation Management for Older Adults in the Ordinary and COVID-19 Times
45. Clinical Impact Potential of Supplemental Nutrients as Adjuncts of Therapy in High-Risk COVID-19 for Obese Patients
46. Lactoferrin: A Critical Mediator of Both Host Immune Response and Antimicrobial Activity in Response to Streptococcal Infections
47. Antibacterial and immunomodulatory effects of Pheromonicin-NM on Escherichia coli-challenged bovine mammary epithelial cells
48. Inhibition of nuclear factor kappa B as a mechanism of Danshensu during Toll-like receptor 2-triggered inflammation in macrophages
49. Distribution of Lactoferrin Is Related with Dynamics of Neutrophils in Bacterial Infected Mice Intestine
50. Viral Hepatitis and Iron Dysregulation: Molecular Pathways and the Role of Lactoferrin
51. Iron bond bovine lactoferrin for the treatment of cancers and anemia associated with cancer cachexia
52.
53. Lactoferrin deficiency induces a pro-metastatic tumor microenvironment through recruiting myeloid-derived suppressor cells in mice
54.
55. Lactoferrin concentration and expression in New Zealand cows milked once or twice a day
56. Development of dairy herd of transgenic goats as biofactory for large-scale production of biologically active recombinant human lactoferrin
57. The Role of Iron Regulation in Immunometabolism and Immune-Related Disease
58. Lactoferrin CpG Island Hypermethylation and Decoupling of mRNA and Protein Expression in the Early Stages of Prostate Carcinogenesis
59. Functional analysis of recombinant buffalo lactoferrin and monoferric lobes and their cytotoxic effect on buffalo mammary epithelial cells
60. No Difference in Lactoferrin Levels between Metabolically Healthy and Unhealthy Obese Women
61. Serum lactoferrin concentration of primiparous sow during gestation and lactation, and comparison between sow-fed and formula-fed piglets1
62. Modulatory Effect of the Supplemented Copper Ion on In Vitro Activity of Bovine Lactoferrin to Murine Splenocytes and RAW264.7 Macrophages
63. Activation of TGF-β Canonical and Noncanonical Signaling in Bovine Lactoferrin-Induced Osteogenic Activity of C3H10T1/2 Mesenchymal Stem Cells
64. Aerosolized Bovine Lactoferrin Counteracts Infection, Inflammation and Iron Dysbalance in A Cystic Fibrosis Mouse Model of Pseudomonas aeruginosa Chronic Lung Infection
65. Macrophage in vitro Response on Hybrid Coatings Obtained by Matrix Assisted Pulsed Laser Evaporation
66. Lactoferrin in Aseptic and Septic Inflammation
67. Gastric digestion of cow and goat milk: Peptides derived from simulated conditions of infant digestion
68. Egg Derived Ovotransferrins and Lactoferrins
69. Systemic Inflammatory Response Syndrome (SIRS) as an Insult-Induced Immune Dissonance: A Role for Lactoferrin
70. Raw cow’s milk consumption and allergic diseases – The potential role of bioactive whey proteins
71. Elevated Levels of Intelectin-1, a Pathogen-binding Lectin, in the BAL Fluid of Patients with Chronic Eosinophilic Pneumonia and Hypersensitivity Pneumonitis
72. The possible protective effect of lactoferrin on lipopolysaccharide-induced memory impairment in albino rats
73. Efficacy of Lactoferrin Oral Administration in the Treatment of Anemia and Anemia of Inflammation in Pregnant and Non-pregnant Women: An Interventional Study
74. Electrochemical immunosensor detection for lactoferrin in milk powder
75. Multimetallic Microparticles Increase the Potency of Rifampicin against Intracellular Mycobacterium tuberculosis
76. Physico-chemical properties influence the functions and efficacy of commercial bovine lactoferrins
77. Erythropoietin and Nrf2: key factors in the neuroprotection provided by apo-lactoferrin
78. The effect of dietary approaches to stop hypertension (DASH) on serum inflammatory markers: A systematic review and meta-analysis of randomized trials
79. Milk basic protein supplementation exerts an anti-inflammatory effect in a food-allergic enteropathy model mouse
80. Role of Lactobacilli and Lactoferrin in the Mucosal Cervicovaginal Defense
81. Immune Responses in the Upper Respiratory Tract in Health and Disease
82.
83. Lactoferrin Prevents Susceptibility of WEHI 231 Cells to Anti-Ig-Induced Cell Death Promoting Cell Differentiation
84. Impact of chronic and acute inflammation on extra- and intracellular iron homeostasis
85. Lactoferrin-induced growth factors and cytokines expression profile in pre-osteoblast MC3T3-E1 cell and LRP1 stable knockdown MC3T3-E1 cell
86. Lactoferrin: A Natural Glycoprotein Involved in Iron and Inflammatory Homeostasis
87. Role of CXC chemokine receptor type 4 as a lactoferrin receptor1
88. Advances in lactoferrin research concerning bovine mastitis1
89. Aerosolized bovine lactoferrin reduces neutrophils and pro-inflammatory cytokines in mouse models of Pseudomonas aeruginosa lung infections1
90. Neutrophils in ulcerative colitis: a review of selected biomarkers and their potential therapeutic implications
91. Colostrum and milk protein rankings and ratios of importance to neonatal calf health using a proteomics approach
92. Quantitation of human milk proteins and their glycoforms using multiple reaction monitoring (MRM)
93. Immunomodulatory effect of protease hydrolysates from ovotransferrin
94. A Novel Cysteine Sulfinic Acid Decarboxylase Knock-Out Mouse: Taurine Distribution in Various Tissues With and Without Taurine Supplementation
95. The impact of lactoferrin with different levels of metal saturation on the intestinal epithelial barrier function and mucosal inflammation
96. New Insights into Upper Airway Innate Immunity
97. Introduction: Emerging Roles of Bioactive Components in Pediatric Nutrition
98. Bioactive Proteins in Human Milk: Health, Nutrition, and Implications for Infant Formulas
99. Overview of Lactoferrin as a Natural Immune Modulator
100. Macrophage Apoptosis Triggered by IpaD from Shigella flexneri
101. Lactoferrin during lactation reduces lipopolysaccharide‐induced brain injury
102. Bovine lactoferrin suppresses high-fat diet induced obesity and modulates gut microbiota in C57BL/6J mice
103. Antibiotics
104. Lactoferrin Decreases the Intestinal Inflammation Triggered by a Soybean Meal-Based Diet in Zebrafish
105. Secreted multifunctional Glyceraldehyde-3-phosphate dehydrogenase sequesters lactoferrin and iron into cells via a non-canonical pathway
106. Chronic rhinosinusitis pathogenesis
107. Bovine Lactoferrin-Induced CCL1 Expression Involves Distinct Receptors in Monocyte-Derived Dendritic Cells and Their Monocyte Precursors
108. Lactoferrin Promotes Early Neurodevelopment and Cognition in Postnatal Piglets by Upregulating the BDNF Signaling Pathway and Polysialylation
109. Bone Regeneration Is Promoted by Orally Administered Bovine Lactoferrin in a Rabbit Tibial Distraction Osteogenesis Model
110. Inflammatory and metabolic responses to high-fat meals with and without dairy products in men
111. Protective role of dairy and its constituents on vascular function independent of blood pressure-lowering activities
112. A Novel Murine Anti-Lactoferrin Monoclonal Antibody Activates Human Polymorphonuclear Leukocytes through Membrane-Bound Lactoferrin and TLR4
113. Lactoferrin: A Modulator for Immunity against Tuberculosis Related Granulomatous Pathology
114. Lactotransferrin expression is downregulated and affects the mitogen-activated protein kinase pathway in gastric cancer
115. A Novel Cysteine Sulfinic Acid Decarboxylase Knock-Out Mouse: Comparison Between Newborn and Weanling Mice
116. Neutrophil Responses to Aspergillosis: New Roles for Old Players
117. Lactoferrin during lactation protects the immature hypoxic‐ischemic rat brain
118. Lactoferrin differently modulates the inflammatory response in epithelial models mimicking human inflammatory and infectious diseases
119. Lactoferrin for prevention of neonatal sepsis
120. Soluble Mediators Regulating Immunity in Early Life
121. Molecular mechanism underlying the impact of vitamin D on disease activity of MS
122. The possible role of antimicrobial proteins in obesity-associated immunologic alterations
123. Immunomodulatory effects of recombinant lactoferrin during MRSA infection
124. Differential expression of antimicrobial polypeptides in cord blood samples of preterm and term infants
125. Development of a Novel Cysteine Sulfinic Acid Decarboxylase Knockout Mouse: Dietary Taurine Reduces Neonatal Mortality
126. New aspects of the C5a receptor
127. Dairy protein hydrolysates: Peptides for health benefits
128. Bacterial receptors for host transferrin and lactoferrin: molecular mechanisms and role in host–microbe interactions
129. Oral administration of bovine lactoferrin attenuates ultraviolet B-induced skin photodamage in hairless mice
130. Separation of iron-free and iron-saturated forms of transferrin and lactoferrin via capillary electrophoresis performed in fused-silica and neutral capillaries
131. Lack of effect of bovine lactoferrin in respiratory syncytial virus replication and clinical disease severity in the mouse model
132. Lactoferrin and the newborn: current perspectives
133. miR-214 promotes tumorigenesis by targeting lactotransferrin in nasopharyngeal carcinoma
134. Lactoferrin: Antimicrobial activity and therapeutic potential
135. The clinical efficacy of a bovine lactoferrin/whey protein Ig-rich fraction (Lf/IgF) for the common cold: A double blind randomized study
136. Impact of dairy products on biomarkers of inflammation: a systematic review of randomized controlled nutritional intervention studies in overweight and obese adults
137. Antimicrobial Peptides: Their History, Evolution, and Functional Promiscuity
138. A bioinspired hybrid silica–protein material with antimicrobial activity by iron uptake
139. Studies on the Immunomodulatory Effects of Lactoferrin in Rats Infected with E. coli
140. Lactoferrin, a bird’s eye view

View Options

Get Access

Login options

Check if you access through your login credentials or your institution to get full access on this article.

Subscribe

Click on the button below to subscribe to Biochemistry and Cell Biology

Purchase options

Purchase this article to get full access to it.

Restore your content access

Enter your email address to restore your content access:

Note: This functionality works only for purchases done as a guest. If you already have an account, log in to access the content to which you are entitled.

View options

PDF

View PDF

Full Text

View Full Text

Media

Media

Other

Tables

Share Options

Share

Share the article link

Share on social media