Cookies Notification

We use cookies to improve your website experience. To learn about our use of cookies and how you can manage your cookie settings, please see our Cookie Policy.
×

Rotationally resolved threshold photoelectron spectroscopy of O2 using coherent XUV: formation of vibrationally excited ions in the Franck–Condon gap

Publication: Canadian Journal of Physics
November 1994

Abstract

The rotationally resolved photoelectron spectrum of high vibrational levels of O2+ in the Franck–Condon gap was investigated using pulsed field ionization, zero kinetic energy photoelectron spectroscopy. By using a coherent extreme ultraviolet light source for single-photon excitation, the ν+ = 6–24 vibrational levels of O2+X2Πg were studied. This is the first time levels higher than ν+ = 14 have been observed with rotational resolution. The highest level studied in the present work had a vibrational energy corresponding to 70% of the well depth. Along with the novelty of the spectroscopic technique, the present results reveal interesting and new ionization dynamics. All levels observed are Franck–Condon forbidden, and are not observed in a conventional photoelectron spectrum. There was no direct relation between the vibrational bands and the autoionizing states observed in the photoionization efficiency spectrum in the same energy region, and the rotational line intensities observed in the various bands in the current threshold photoelectron spectra were all similar. The mechanism of this process was different from the "resonant autoionization" model, which involves coupling between a Rydberg state with a low principal quantum number, a dissociative state, arid the Rydberg series converging to the vibrationally excited ion states. Instead, the excitation process was believed to be more direct, involving mainly a dissociative state (or states) and the Rydberg states with a vibrationally excited ion core. Further investigation of this mechanism is still necessary, but the formation of these highly vibrationally excited ions opens a new horizon in state-selective reaction dynamics. With the coherent XUV light source and the PFI-ZEKE technique, a wide range of vibrational energies (up to 4 eV) can be deposited into the O2+ reactant with rovibrational selectivity.

Résumé

Le spectre photoélectronique résolu rotationnellement des niveaux élevés de vibration de O2+ dans l'intervalle Franck–Condon a été étudié par spectroscopie des photoélectrons d'énergie zéro et d'ionisation par champ puisé. En utilisant tine source cohérente dans l'extrême ultraviolet pour l'excitation par un seul photon, on a étudié les niveaux de vibration ν+ = 6–24 de O2+X2Πg. C'est la première fois que des niveaux plus hauts que ν+ = 14 sont observés avec résolution rotationnelle. Le plus haut niveau étudié dans ce travail avait une énergie de vibration correspondant à 70% de la profondeur du puits. Avec la nouveauté de la technique spectroscopique, les résultats obtenus révèlent une dynamique d'ionisation nouvelle et intéressante. Tous les niveaux observés sont interdits selon les règles Franck–Condon et ne sont pas observés dans un spectre photoélectronique conventionnel. Il n'y a aucune relation directe entre les bandes vibrationnelles et les états autoionisants observés dans le spectre de rendement de photoionisation pour la même région d'énergie, et les intensités des raies de rotation observées dans les différentes bandes du spectre photoélectronique de seuil sont toutes semblables. Le mécanisme de ce processus est différent du modèle « autoionisation par résonance » qui implique un couplage entre un état de Rydberg à faible nombre quantique principal, un état dissociatif et la série de Rydberg convergeant vers les états ioniques excités vibrationnellement. On croit que le processus d'excitation est plus direct, impliquant principalement un état dissociatif (ou plus d'un) et les états de Rydberg avec un coeur ionique excité vibrationnellement. Une investigation plus poussée de ce mécanisme reste nécessaire, mais la formation de ces ions à haute excitation vibrationnelle ouvre un nouvel horizon sur la sélectivité des états en dynamique des réactions. Avec la source cohérente dans l'extrême ultraviolet et la technique des électrons d'énergie cinétique zéro et d'ionisation par champ pulsé, on peut déposer une gamme étendue d'énergies vibrationnelles (jusqu'à 4 eV) sur le réactant O2+ avec sélectivité rovibrationnelle. [Traduit par la rédaction]

Get full access to this article

View all available purchase options and get full access to this article.

Information & Authors

Information

Published In

cover image Canadian Journal of Physics
Canadian Journal of Physics
Volume 72Number 11-12November 1994
Pages: 1284 - 1293

History

Version of record online: 12 February 2011

Permissions

Request permissions for this article.

Authors

Affiliations

Metrics & Citations

Metrics

Other Metrics

Citations

Cite As

Export Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

1. Molecular constants of O2+ X2Πg dioxogenyl ion
2. Two-Photon Vibrational Transitions in 16O2+ as Probes of Variation of the Proton-to-Electron Mass Ratio
3. Search for the Variation in ( m p / m e ) Using Two Vibrational Transition Frequencies of Molecular Ions
4. Estimating the intrinsic limit of the Feller-Peterson-Dixon composite approach when applied to adiabatic ionization potentials in atoms and small molecules
5. Quantum-state-selected integral cross sections for the charge transfer collision of O 2+ (a 4 Π u5/2,3/2,1/2,−1/2 : v + = 1–2; J + ) [O 2+ (X 2 Π g3/2,1/2 : v + = 22–23; J + )] + Ar at center-of-mass collision energies of 0.05–10.00 eV
6. High sensitivity to variation in the proton-to-electron mass ratio in O2+
7. Accurate theoretical spectroscopic investigations of the 20 Λ-S and 58 Ω states of O 2+ cation including the spin–orbit coupling effect
8. Photodissociation dynamics of superexcited O2: Dissociation channels O(5S) vs. O(3S)
9. Rotational Analysis of A 2Πu- X 2Πg System of 16O2+ Cation
10. MRCI study of spectroscopic and molecular properties of X 2 Π g , a4 Π u , A 2 Π u , b4 , D 2 Δ g and B 2 electronic states of ion
11. Neutral dissociation of the I, I′, and I″ vibronic progressions of O2
12. Mass-Analyzed Threshold Ionization (MATI) Spectroscopy of Atoms and Molecules Using VUV Synchrotron Radiation
13. Reinvestigation of the (4, 20) band of the O2+ second negative system
14. ION PAIR DISSOCIATION: Spectroscopy and Dynamics
15. Energetics and dynamics of threshold photoion-pair formation in HF∕DF
16. Photoelectron spectroscopy without photoelectrons: Twenty years of ZEKE spectroscopy
17. Introduction to Active Thermochemical Tables:  Several “Key” Enthalpies of Formation Revisited
18. Rovibration spectrum study of three hot bands with ν′′⩾18 in the second negative system (–) of 16O2+ ion
19. Applications of molecular Rydberg states in chemical dynamics and spectroscopy
20. One- and two-color photoelectron imaging of the CO molecule via the B 1Σ+ state
21. The Dynamics of Electron — Core Interaction in High Molecular Rydberg States
22. Tunable Short Wavelength Generation and Applications
23. References
24. Rotational-resolved pulsed field ionization-photoelectron study of NO+(A′ 1Σ−,v+=0–17) in the energy range of 17.70–20.10 eV
25. Fine-structure selectivity of neutral dissociation with excitation observed in O 2
26. Intense interactions of molecules with a short-wavelength electromagnetic radiation field: I. The fundamentals of the nonadiabatic theory
27. Photophysics of O2 excited by tunable laser radiation around 193 nm
28. Rotationally resolved pulsed field ionization photoelectron study of CO+(X 2Σ+,v+=0–42) in the energy range of 13.98–21.92 eV
29. Rotationally resolved pulsed field ionization photoelectron bands of O2+(X 2Π1/2,3/2g, v+=0–38) in the energy range of 12.05–18.15 eV
30. Rotational-resolved pulsed field ionization photoelectron study of NO+(a 3Σ+,v+=0–16) in the energy range of 15.6–18.2 eV
31. A comparative investigation of Rydberg-state survival in several molecules using mass-analyzed threshold ionization
32. The first electronic states of Ar2+ studied by high resolution photoelectron spectroscopy
33. High resolution photoelectron (ZEKE-PFI) spectrum of IBr: the role of repulsive intermediate states
34. Towards resolving the hyperfine structure in ions by photoelectron spectroscopy
35. Generation of tunable coherent extreme ultraviolet radiation beyond 19 eV by resonant four-wave mixing in argon
36. High-resolution photoelectron spectroscopy using multibunch synchrotron radiation:
37. High-resolution threshold photoelectron spectra of molecular oxygen in the 18–24 eV region
38. High resolution laser spectroscopy beyond 18 eV: the B2Σu+←X1Σg+ photoelectronic transition of N2
39. Penning ionization of the CO2 molecule by Ne* (3 3P2,0) metastable atom
40. Chapter 9. Recent applications and developments in ZEKE spectroscopy
41. The first adiabatic ionization potential of Ar2
42. General symmetry selection rules for the photoionization of polyatomic molecules
43. ZEKE spectroscopy with coherent vacuum ultraviolet radiation: The X 2∑g+ and A 2∏u states of N2+ in the 15.5 eV to 17.7 eV photon energy range
44. Penning ionization electron spectroscopy of the C2H2 molecule by Ne∗ (33P2, 33P0) metastable atoms
45. MOLECULES IN HIGH RYDBERG STATES
46. Photoelectron and photofragment velocity map imaging of state-selected molecular oxygen dissociation/ionization dynamics
47. Fourier transform emission spectroscopy of the second negative (A2Piu - X2Pig) system of the O+2 ion
48. A high resolution pulsed field ionization photoelectron study of O2 using third generation undulator synchrotron radiation
49. Autoionization process in Penning ionization of the CO molecule by helium atoms in triplet metastable state
50. Towards rotationally resolved photoelectron spectroscopy
51. PFI-ZEKE spectroscopy using coherent vacuum UV: O2+ (a 4IIu) ← O2 (X3Σg−)
52. Rotational analysis of the threshold photoelectron spectra of room temperature and jet-cooled CO2

View Options

Login options

Check if you access through your login credentials or your institution to get full access on this article.

Subscribe

Click on the button below to subscribe to Canadian Journal of Physics

Purchase options

Purchase this article to get full access to it.

Restore your content access

Enter your email address to restore your content access:

Note: This functionality works only for purchases done as a guest. If you already have an account, log in to access the content to which you are entitled.

View options

PDF

View PDF

Figures

Tables

Media

Share Options

Share

Share the article link

Share on social media