research-article

Intra-annual patterns of tracheid size in the Mediterranean tree Juniperus thurifera as an indicator of seasonal water stress

Publication: Canadian Journal of Forest Research24 May 2011https://doi.org/10.1139/x11-045

Abstract

Because climate can affect xylem cell anatomy, series of intra-annual cell anatomical features have the potential to retrospectively supply seasonal climatic information. In this study, we explored the ability to extract information about water stress conditions from tracheid features of the Mediterranean conifer Juniperus thurifera L. Tracheidograms of four climatic years from two drought-sensitive sites in Spain were compared to evaluate whether it is possible to link intra-annual cell size patterns to seasonal climatic conditions. Results indicated site-specific anatomical adjustment such as smaller and thicker tracheids at the dryer site but also showed a strong climatic imprint on the intra-annual pattern of tracheid size. Site differences in cell size reflected expected structural adjustments against cavitation failures. Differences between intra-annual patterns, however, indicated a response to seasonal changes in water availability whereby cells formed under drought conditions were smaller and thicker, and vice versa. This relationship was more manifest and stable at the dryer site.

Résumé

Étant donné que le climat peut influencer l’anatomie des cellules du xylème, il est possible que des séquences des caractéristiques anatomiques intra-annuelles des cellules puissent, rétrospectivement, fournir des informations climatiques saisonnières. Dans cette étude, nous avons exploré la capacité d’extraire de l’information au sujet des conditions de stress hydrique à partir des caractéristiques des trachéides du Juniperus thurifera L., un conifère de la région méditerranéenne. Les trachéidogrammes de quatre années climatiques provenant de deux stations sujettes à la sécheresse en Espagne ont été comparés pour évaluer s’il est possible de relier le patron intra-annuel de la dimension des cellules et les conditions climatiques saisonnières. Les résultats ont montré qu’il y avait une adaptation anatomique spécifique à la station, telle que des trachéides plus petites et plus épaisses dans la station la plus sèche, mais qu’il y avait aussi une forte empreinte climatique dans le patron intra-annuel de la dimension des trachéides. Les différences entre les stations quant à la dimension des cellules reflétaient les adaptations structurales prévisibles pour prévenir les accidents dus à la cavitation. Cependant, les différences entre les patrons intra-annuels étaient dues à une réaction aux changements saisonniers dans la disponibilité en eau, à la suite de laquelle les cellules formées dans des conditions de sécheresse étaient plus petites et plus épaisses et vice-versa. Cette relation était plus évidente et stable dans la station la plus sèche.

References

Abe H. and Nakai T. 1999. Effect of the water status within a tree on tracheid morphogenesis in Cryptomeria japonica D. Don. Trees (Berl.), 14(3): 124–129.
Abe H., Nakai T., Utsumi Y., and Kagawa A. 2003. Temporal water deficit and wood formation in Cryptomeria japonica. Tree Physiol. 23(12): 859–863.
Abramoff M.D., Magelhaes P.J., and Ram S.I. 2004. Image processing with ImageJ. Biophotonics International, 11(7): 36–42.
Amaral-Franco, J. 1986. Juniperus. In Flora Ibérica. Edited by S. Castroviejo, M. Laínz, G. López-González, P. Montserrat, F. Muñoz-Garmendia, J. Paiva, and L. Villar. Real Jardín Botánico, C.S.I.C., Madrid, Spain. pp. 181−188.
Antonova G.F. and Stasova V.V. 1993. Effects of environmental factors on wood formation in Scots pine stems. Trees (Berl.), 7(4): 214–219.
Antonova G.F. and Stasova V.V. 1997. Effects of environmental factors on wood formation in larch (Larix sibirica Ldb.) stems. Trees (Berl.), 11(8): 462–468.
Arend M. and Fromm J. 2007. Seasonal change in the drought response of wood cell development in poplar. Tree Physiol. 27(7): 985–992.
Bertaudière V., Montès N., Gauquelin T., and Édouard J.L. 1999. Dendroécologie du genévrier thurifére (Juniperus thurifera L.): exemple de la thuriféraie de la montagne de Rié (Pyrénées, France). Ann. For. Sci. 56(8): 685–697.
Camarero J.J., Olano J.M., and Parras A. 2010. Plastic bimodal xylogenesis in conifers from continental Mediterranean climates. New Phytol. 185(2): 471–480.
Campelo F., Gutierrez E., Ribas M., Nabais C., and Freitas H. 2007a. Relationships between climate and double rings in Quercus ilex from northeast Spain. Can. J. For. Res. 37(10): 1915–1923.
Campelo F., Nabais C., Freitas H., and Gutierrez E. 2007b. Climatic significance of tree-ring width and intra-annual density fluctuations in Pinus pinea from a dry Mediterranean area in Portugal. Ann. For. Sci. 64(2): 229–238.
Cherubini P., Gartner B.L., Tognetti R., Bräker O.U., Schoch W., and Innes J.L. 2003. Identification, measurement and interpretation of tree rings in woody species from Mediterranean climates. Biol. Rev. Camb. Philos. Soc. 78(1): 119–148.
Climate Research Unit. 2008. CRU datasets – CRU TS time-series [online]. University of East Anglia Climate Research Unit (CRU). Available from the British Atmospheric Data Centre at http://badc.nerc.ac.uk/view/badc.nerc.ac.uk__ATOM__dataent_ 1256223773328276.
Cochard H. 1992. Vulnerability of several conifers to air embolism. Tree Physiol. 11(1): 73–83.
Creber G. and Chaloner W. 1984. Influence of environmental factors on the wood structure of living and fossil trees. Bot. Rev. 50(4): 357–448.
De Luis M., Gričar J., Čufar K., and Raventós J. 2007. Seasonal dynamics of wood formation in Pinus halepensis from dry and semi-arid ecosystems in Spain. IAWA J. 28(4): 389–404.
Denne M.P. 1988. Definition of latewood according to Mork (1928). IAWA Bull. 10(1): 59–62.
Denne, M.P., and Dodd, R.S. 1981. The environmental control of xylem differentiation. In Xylem cell development. Edited by J.R. Barnett. Castle House Publications Ltd., Kent, UK. pp. 236–255.
DeSoto, L. 2010. Global change effect on the dioecious tree Juniperus thurifera in the Iberian Peninsula. Ph.D. thesis, Instituto Universitario de Investigación en Gestión Forestal Sostenible, University of Valladolid, Soria, Spain.
Eilmann B., Zweifel R., Buchmann N., Fonti P., and Rigling A. 2009. Drought induced adaptation of xylem in Scots pine and pubescent oak. Tree Physiol. 29(8): 1011–1020.
Fonti P., Solomonoff N., and García-González I. 2007. Earlywood vessels of Castanea sativa record temperature before their formation. New Phytol. 173(3): 562–570.
Fonti P., von Arx G., García-González I., Eilmann B., Sass-Klaassen U., Gärtner H., and Eckstein D. 2010. Studying global change through investigation of the plastic responses of xylem anatomy in tree rings. New Phytol. 185(1): 42–53.
Fritts, H.C. 2001. Tree rings and climate. Blackburn Press, Caldwell, New Jersey.
Gallé A., Esper J., Feller U., Ribas-Carbo M., and Fonti P. 2010. Responses of wood anatomy and carbon isotope composition of Quercus pubescens saplings subjected to two consecutive years of summer drought. Ann. For. Sci. 67(8): 809.
Garcia-Plazaola J.I., Faria T., Abadia J., Abadia A., Chaves M.M., and Pereira J.S. 1997. Seasonal changes in xantophyll composition and photosynthesis of cork oak (Quercus suber L.) leaves under Mediterranean climate. J. Exp. Bot. 48(9): 1667–1674.
Gärtner H. and Nievergelt D. 2010. The core-microtome. A new tool for surface preparation on cores and time series analysis of varying cell parameters. Dendrochronologia, 28(2): 85–92.
Gindl W. 2001. Cell-wall lignin content related to tracheid dimensions in drought sensitive Austrian pine (Pinus nigra Arnold). IAWA J. 22(2): 113–120.
Grissino-Mayer H.D. 2001. Evaluating crossdating accuracy: a manual and tutorial for the computer program COFECHA. Tree-Ring Res. 57(2): 205–221.
Huxman T.E., Snyder K.A., Tissue D., Leffler A.J., Ogle K., Pockman W.T., Sandquist D.R., Potts D.L., and Schwinning S. 2004. Precipitation pulses and carbon fluxes in semiarid and arid ecosystems. Oecologia, 141(2): 254–268.
Jenkings P.A. 1974. Influence of temperature change on wood formation in Pinus radiata grown in controlled environments. N.Z. J. Bot. 13: 579–592.
Larson P.R. 1963. The indirect effect of drought on tracheid diameter in red pine. For. Sci. 9(1): 52–62.
Liphschitz N. and Lev-Yadun S. 1986. Cambial activity in evergreen and seasonal dimorphics around the Mediterranean. IAWA Bull. 7(2): 145–153.
Masiokas M. and Villalba R. 2004. Climatic significance of intra-annual bands in the wood of Nothofagus pumilio in southern Patagonia. Trees (Berl.), 18(6): 696–704.
Nicholls J.W.P. and Waring H.D. 1977. The effect of environmental factors on wood characteristics. IV. Irrigation and partial droughting of Pinus radiata. Silvae Genet. 26(2–3): 107–111.
Omar R.Z., Wright E.M., Turner R.M., and Thompson S.G. 1999. Analysing repeated measurements data: a practical comparison of methods. Stat. Med. 18(13): 1587–1603.
Oribe Y., Funada R., and Kubo T. 2003. Relationships between cambial activity, cell differentiation and the localisation of starch in storage tissues around the cambium in locally heated stems of Abies sachalinensis (Schmidt) Masters. Trees (Berl.), 17(3): 185–192.
Panyushkina I.P., Hughes M.K., Vaganov E.A., and Munro M.A.R. 2003. Summer temperature in northeastern Siberia since 1642 reconstructed from tracheids dimensions and cell numbers of Larix cajanderi. Can. J. For. Res. 33(10): 1905–1914.
Quené H. and van der Bergh H. 2004. On multi-level modeling of data from repeated measures designs: a tutorial. Speech Commun. 43(1–2): 103–121.
Quinn, G.P., and Keough, M.L. 2002. Experimental design and data analysis for biologists. Cambridge University Press, Cambridge, UK.
Rigling A., Waldner P.O., Forster T., Braker O.U., and Pouttu A. 2001. Ecological interpretation of tree-ring width and intra-annual density fluctuations in Pinus sylvestris on dry sites in the central Alps and Siberia. Can. J. For. Res. 31(1): 18–31.
Rossi S., Simard S., Rathgeber C.B.K., Deslauriers A., and De Zan C. 2009. Effects of a 20-day-long dry period on cambial and apical meristem growth in Abies balsamea seedlings. Trees (Berl.), 23(1): 85–93.
Rozas V., DeSoto L., and Olano J.M. 2009. Sex-specific, age-dependent sensitivity of tree-ring growth to climate in the dioecious tree Juniperus thurifera. New Phytol. 182(3): 687–697.
Schweingruber, F.H. 2007. Wood structure and environment. Series in Wood Science, Springer-Verlag, Berlin, Germany.
Sheriff D.W. and Whitehead D. 1984. Photosynthesis and wood structure in Pinus radiata D. Don during dehydration and immediately after rewatering. Plant Cell Environ. 7(1): 53–62.
Singer J. 1998. Using SAS PROC MIXED to fit multilevel models, hierarchical models, and individual growth models. J. Educ. Behav. Stat. 23(4): 323–355.
Splechtna B.E., Dobrys J., and Klinka K. 2000. Tree-ring characteristics of subalpine fir (Abies lasiocarpa (Hook.) Nutt.) in relation to elevation and climatic fluctuations. Ann. For. Sci. 57(2): 89–100.
St-Germain J.-L. and Krause C. 2008. Latitudinal variation in tree-ring and wood cell characteristics of Picea mariana across the continuous boreal forest in Quebec. Can. J. For. Res. 38(6): 1397–1405.
Terradas J. and Savé R. 1992. The influence of summer and winter stress and water relationships on the distribution of Quercus ilex L. Vegetatio, 90–100(1): 137–145.
Thornthwaite C.W. 1948. An approach toward a rational classification of climate. Geogr. Rev. 38(1): 55–94.
Uggla C., Mellerowicz E.J., and Sundberg B. 1998. Indole-3-acetic acid controls cambial growth in Scots pine by positional signalling. Plant Physiol. 117(1): 113–121.
Uggla C., Magel E., Moritz T., and Sundberg B. 2001. Function and dynamics of auxin and carbohydrates during earlywood/latewood transition in Scots pine. Plant Physiol. 125(4): 2029–2039.
Vaganov, E.A. 1990. The tracheidogram method in tree-ring analysis and its application. In Methods of dendrochronology: applications in the environmental sciences. Edited by E.R. Cook and L.A. Kairiukstis. Kluwer Academic Publishers, Dordrecht, the Netherlands. pp. 63–76.
Vysotskaya L.G. and Vaganov E.A. 1989. Components of the variability of radial cell size in tree rings of conifers. IAWA Bull. 10(4): 417–428.
Wang L., Payette S., and Bégin Y. 2002. Relationships between anatomical and densitometric characteristics of black spruce and summer temperature at tree line in northern Québec. Can. J. For. Res. 32(3): 477–486.
Willson C.J. and Jackson R.B. 2006. Xylem cavitation caused by drought and freezing stress in four co-occurring Juniperus species. Physiol. Plant. 127(3): 374–382.
Willson C.J., Manos P.S., and Jackson R.B. 2008. Hydraulic traits are influenced by phylogenetic history in the drought-resistant, invasive genus Juniperus (Cupressaceae). Am. J. Bot. 95(3): 299–314.
Wimmer R. 2002. Wood anatomical features in tree-rings as indicators of environmental change. Dendrochronologia, 20(1–2): 21–36.

Information & Authors

Information

Published In

Canadian Journal of Forest Research cover image
Canadian Journal of Forest Research
Volume 41Number 6June 2011
Pages: 1280 - 1294

History

Received: 12 July 2010
Accepted: 22 February 2011
Published online: 24 May 2011

Permissions

Request permissions for this article.

Authors

Affiliations

Lucía DeSoto
Departamento de Ciencias Agroforestales, Área de Botánica, EUI Agrarias, Universidad de Valladolid, Los Pajaritos s/n, E-42004 Soria, Spain.
Marcelino De la Cruz
Departamento de Biología, E.U.I.T. Agrícola, Universidad Politécnica de Madrid, E-28040 Madrid, Spain.
Patrick Fonti
WSL Swiss Federal Research Institute, Landscape Dynamics, Zürcherstr. 111, CH-8903 Birmensdorf, Switzerland.

Metrics & Citations

Metrics

Citations

View Options

Media

Figures

Other

Tables

Share

Information & Authors
Metrics & Citations
Other Metrics
 
Cite As


 
Export Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.


 
Cited by
1. Formation, structure and climatic significance of blue rings and frost rings in high elevation bristlecone pine (Pinus longaeva D.K. Bailey)
2. Comparison of methods for the demarcation between earlywood and latewood in tree rings of Norway spruce
3. A phenology-based approach to the analysis of conifers intra-annual xylem anatomy in water-limited environments
4. Wood anatomy of boreal species in a warming world: a review
5. High responsiveness of wood anatomy to water availability and drought near the equatorial rear edge of Douglas-fir
6. Long- and short-term impacts of a defoliating moth plus mistletoe on tree growth, wood anatomy and water-use efficiency
7. How needle phenology indicates the changes of xylem cell formation during drought stress in Pinus sylvestris L.
8. Intra-Ring Variations and Interrelationships for Selected Wood Anatomical and Physical Properties of Thuja Occidentalis L.
9. Intra-annual variability in isotopic and total nitrogen in tree rings of old growth Sitka spruce from coastal British Columbia
10. Site conditions influence the climate signal of intra-annual density fluctuations in tree rings of Q. ilex L.
11. RAPTOR: Row and position tracheid organizer in R
12. Disentangling the climate-driven bimodal growth pattern in coastal and continental Mediterranean pine stands
13. Woodland vegetation history and human impacts in south-central Anatolia 16,000–6500 cal BP: Anthracological results from five prehistoric sites in the Konya plain
14. Cambial response of Norway spruce to modified carbon availability by phloem girdling
15. Retrospective Analysis of Wood Anatomical Traits Reveals a Recent Extension in Tree Cambial Activity in Two High-Elevation Conifers
16. Ecophysiology and Plasticity of Wood and Phloem Formation
17. Tree growth, cambial phenology, and wood anatomy of limber pine at a Great Basin (USA) mountain observatory
18. Tracheid anatomical responses to climate in a forest-steppe in Southern Siberia
19. Blue intensity parameters derived from Ponderosa pine tree rings characterize intra-annual density fluctuations and reveal seasonally divergent water limitations
20. Secondary Growth and Carbohydrate Storage Patterns Differ between Sexes in Juniperus thurifera
21. Linking wood anatomy and xylogenesis allows pinpointing of climate and drought influences on growth of coexisting conifers in continental Mediterranean climate
22. tracheideR – an R package to standardize tracheid profiles based on position
23. Plastic Response of Tracheids in Pinus pinaster in a Water-Limited Environment: Adjusting Lumen Size instead of Wall Thickness
24. Variability of ray anatomy of Larix gmelinii along a forest productivity gradient in Siberia
25. Atlantic and Mediterranean synoptic drivers of central Spanish juniper growth
26. High-resolution climatic analysis of wood anatomical features in Corsican pine from Corsica (France) using latewood tracheid profiles
27. First known fire scar on a fossil tree trunk provides evidence of Late Triassic wildfire
28. Combining wood anatomy and stable isotope variations in a 600-year multi-parameter climate reconstruction from Corsican black pine
29. Climatic Influences on Wood Anatomy and Tree-Ring Features of Great Basin Conifers at a New Mountain Observatory
30. An experimentally controlled extreme drought in a Norway spruce forest reveals fast hydraulic response and subsequent recovery of growth rates
31. Minimum wood density of Juniperus thurifera is a robust proxy of spring water availability in a continental Mediterranean climate
33. Optimizing cell-anatomical chronologies of Scots pine by stepwise increasing the number of radial tracheid rows included—Case study based on three Scandinavian sites
34. Relationship between wood anatomy, tree-ring widths and wood density of Pinus sylvestris L. and climate at high latitudes in northern Sweden
35. Climate signals derived from cell anatomy of Scots pine in NE Germany
36. Climate Control of Wood Formation: Illustrated for Scots Pine at Its Northern Distribution Limit
37. Xylem plasticity allows rapid hydraulic adjustment to annual climatic variability
38. Quantitative Tracheid Anatomy Reveals a Complex Environmental Control of Wood Structure in Continental Mediterranean Climate
Share Options
Share the article link
Share on social media
Get Access
Login options

Check if you access through your login credentials or your institution to get full access on this article.

Subscribe to csp

Click on the button below to subscribe now

Restore your content access

Enter your email address to restore your content access:

Note: This functionality works only for purchases done as a guest. If you already have an account, log in to access the content to which you are entitled.

View Options
Tables
References