Cookies Notification

We use cookies to improve your website experience. To learn about our use of cookies and how you can manage your cookie settings, please see our Cookie Policy.
×

Shear modulus and material damping of municipal solid waste based on large-scale cyclic triaxial testing

Publication: Canadian Geotechnical Journal
13 February 2008

Abstract

Representative dynamic properties of municipal solid waste (MSW) are required to perform reliable seismic analyses of MSW landfills. A comprehensive large-scale cyclic triaxial laboratory testing program was performed on MSW retrieved from a landfill in the San Francisco Bay area to evaluate the small-strain shear modulus, and strain-dependent normalized shear modulus reduction and material damping ratio relationships of MSW. The effects of waste composition, confining stress, unit weight, time under confinement, and loading frequency on these dynamic properties were evaluated. The small-strain shear modulus depends primarily on waste composition, confining stress, unit weight, and time under confinement. The normalized shear modulus reduction and material damping curves for MSW depend on waste composition and confining stress. Based on the results of this study and a review of literature, strain-dependent shear modulus reduction and material damping relationships are recommended for use in landfill design.

Résumé

Les propriétés dynamiques représentatives des résidus solides municipaux (« MSW ») sont requises pour réaliser des analyses sismiques des enfouissements sanitaires de « MSW ». On a réalisé un vaste programme d’essais triaxiaux cycliques à grande échelle en laboratoire sur des « MSW » prélevés d’un site dans la région de la Baie de San Francisco pour évaluer le module de cisaillement à petite déformation, la réduction du module de cisaillement normalizé dépendant du temps, et les relations du rapport d’amortissement du matériau de « MSW ». On a évalué les effets de la composition des résidus, de la contrainte de confinement, du poids volumique, du temps sous confinement, et de la fréquence des chargements sur ces propriétés dynamiques. Le module de cisaillement à faible déformation dépend principalement de la composition des résidus, de la contrainte de confinement, du poids volumique, et du temps sous confinement. La réduction du module de cisaillement normalizé et les courbes d’amortissement des « MSW » dépendent de la composition des résidus et de la contrainte de confinement. En partant des résultats de cette étude et de la revue de la littérature, on recommande d’utiliser la réduction du module de cisaillement dépendant du temps et les relations d’amortissement du matériau pour la conception de sites d’enfouissement.

Get full access to this article

View all available purchase options and get full access to this article.

References

Augello, A.J., Bray, J.D., Seed, R.B., Matasovic, N., and Kavazanjian, E., Jr. 1998a. Performance of solid-waste landfill during the Northridge Earthquake. In Proceedings, NEHRP Conference on Research on the Northridge, California Earthquake of January 17, 1994, Consortium of Universities for Research in Earthquake Engineering, Los Angeles, Calif., pp. II-71–II-80.
Augello, A.J., Bray, J.D., Abrahamson, N.A., and Seed, R.B. 1998b. Dynamic properties of solid waste based on back-analysis of OII landfill. Journal of Geotechnical and Geoenvironmental Engineering, 124(3): 211–222.
Elgamal, A., Lai, T., Gunturi, R., and Zeghal, M. 2004. System identification of landfill seismic response. Journal of earthquake engineering, 8(4): 545–566.
Hudson, M., Idriss, I.M., and Bikae, M. 1994. QUAD4M – a computer program to evaluate the seismic response of soil structures using finite element procedures and incorporating compliant base. User's Manual. Center for Geotechnical Modeling, Department of Civil and Environmental Engineering, University of California, Davis, Calif.
Idriss, I.M., Fiegel, G., Hudson, M.B., Mundy, P.K., and Herzig, R. 1995. Seismic response of the Operating Industries landfill. Earthquake design and performance of solid waste landfills, ASCE Geotechnical Special Publication No. 54, Edited by M.Y. Yegian, W.D. Liam Finn, pp. 83–118.
Kavazanjian, E., Jr. 1999. Seismic design of solid waste containment facilities. In Proceedings of the 8th Canadian Conference on Earthquake Engineering, Vancouver, BC, June 1999, pp. 51–89.
Kavazanjian, E., Jr., Matasovic, N., Bonaparte, R., and Schmertmann, G.R. 1995. Evaluation of MSW properties for seismic analysis. Geoenvironment 2000, ASCE Geotechnical Special Publication No. 46, Vol.2, pp. 126–141.
Kavazanjian, E., Jr., Matasovic, N., and Stokoe, K.H. II, and Bray, J.D. 1996. In situ shear wave velocity of solid waste from surface wave measurements. Environmental Geotechnics, Edited by M. Kamon, A.A. Balkema, Rotterdam, the Netherlands Vol. 1, pp. 97–102.
Kramer, S.L. 1996. Geotechnical earthquake engineering, Prentice Hall, N.J.
Lin, Y.-C., Rosenblad, B., and Stokoe, K.H., II. 2004. Data report on shear wave velocity profiles determined by SASW method at: Altamont Landfill, Redwood Landfill, and Tri-Cities Landfill. Geotechnical Engineering Center, Civil Engineering Department, The University of Texas at Austin, 29 October 2004, Geotechnical Engineering Report GR04–3.
Matasovic, N., and Kavazanjian, E., Jr. 1998. Cyclic characterization of OII landfill solid waste. Journal of Geotechnical and Geoenvironmental Engineering, 124(3): 197–210.
Morochnik, V., Bardet, J.P., and Hushmand, B. 1998. Identification of dynamic properties of OII landfill. Journal of Geotechnical and Geoenvironmental Engineering, 124(3): 186–196.
Riemer, M.F., and Safaqah, O.A. 2007. The elastomer gage for local strain measurement in monotonic and cyclic soil testing, ASTM Geotechnical Testing Journal, 30(2): 1–9.
Rix, G.J., Lai, C.G., Foti, S., and Zywicki, D. 1998. Surface wave tests in landfills and embankments. Geotechnical Earthquake Engineering and Soil Dynamics III, ASCE Geotechnical Special Publication No. 75, Volume 2, pp. 1008–1019.
Seed, H.B., Wong, R.T., Idriss, I.M., and Tokimatsu, K. 1984. Moduli and damping factors for dynamic analyses of cohesionless soils. Earthquake Engineering Research Center Report, University of California, Berkley, Calif. Report No. UCB/EERC-84/14. p. 45.
Towhata, I., Kawano, Y., Yonai, Y., and Koelsh, F. 2004. Laboratory tests on dynamic properties of municipal wastes. In Proceedings of the 11th Conference in Soil Dynamics and Earthquake Engineering and the 3rd International Conference on Earthquake Geotechnical Engineering, Vol. 1, pp. 688–693.
Vucetic, M., and Dobry, R. 1991. Effect of soil plasticity on cyclic response. Journal of the Geotechnical Engineering Division, 117: 89–107.
Zekkos, D.P. 2005. Evaluation of static and dynamic properties of municipal solid-waste. Dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy, Department of Civil and Environmental Engineering, University of California, Berkeley, Calif. (Available from http://waste.geoengineer.org)
Zekkos, D.P., Bray, J.D., Kavazanjian, E., Matasovic, N., Rathje, E., Riemer, M., and Stokoe, K.H. 2006. Unit weight of municipal solid waste. Journal of Geotechnical and Geoenvironmental Engineering, 132(10): 1250–1261.
Zekkos, D.P., Bray, J.D., Athanasopoulos, G.A., Riemer, M., Kavazanjian, E., Jr., Matasovic, N., Founta, P.A., and Grizi, A.F. 2007. Compositional and loading rate effects on the shear strength of municipal solid waste, In Proceedings of the 4th International Conference on Earthquake Geotechnical Engineering, 25–28 June 2007, Thessaloniki, Greece.

Information & Authors

Information

Published In

cover image Canadian Geotechnical Journal
Canadian Geotechnical Journal
Volume 45Number 1January 2008
Pages: 45 - 58

History

Received: 7 September 2006
Accepted: 15 May 2007
Version of record online: 13 February 2008

Permissions

Request permissions for this article.

Key Words

  1. cyclic triaxial testing
  2. dynamic properties
  3. earthquakes
  4. solid waste landfill
  5. solid waste properties

Mots-clés

  1. essais triaxiaux cycliques
  2. propriétés dynamiques
  3. séismes
  4. enfouissement de matières solides
  5. propriétés de résidus solides

Authors

Affiliations

Geosyntec Consultants, 475 14th St. Suite 450, Oakland, CA 94612, USA.
Jonathan D. Bray
Department of Civil and Environmental Engineering, University of California at Berkeley, CA 94720-1710 USA
Michael F. Riemer
Department of Civil and Environmental Engineering, University of California at Berkeley, CA 94720-1710 USA

Metrics & Citations

Metrics

Other Metrics

Citations

Cite As

Export Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

1. Static and dynamic loading effects on the strength characteristic of municipal solid waste (MSW) fines reinforced with geosynthetics
2. Study on the shear and deformation characteristics of geogrid-reinforced gravelly soils based on large-scale triaxial tests
3. Laboratory studies of the dynamic characteristics of mechanically–biologically treated waste
4. Influence of heterogeneity and elevated temperatures on the seismic translational stability of engineered landfills
5. Analysis of Seismic Refraction and Surface Wave Data for the Evaluation of Layers and Saturation of Solid Waste from a Landfill in Brasília, Brazil
6. Mechanical behavior of inert waste landfills under seismic condition
7. Effect of geometry and material of municipal solid waste landfills on seismic response
8. Parametric Study on Dynamic Characterization of Municipal Solid Waste Fine Fractions for Geotechnical Purpose
9. Experimental investigation on dynamic behavior of silt-rich fly ash using cyclic triaxial and bender element tests
10. Laboratory Study on Dynamic Properties of Municipal Solid Waste in Saravan Landfill, Iran
11. Experimental investigation on dynamic characteristics of sandy gravel in frozen region
12. Characterization of Variability of Unit Weight and Shear Parameters of Municipal Solid Waste
13. 1D and 2D Dynamic Site Response of Landfill Site Through Numerical Analysis
14. A constitutive model for municipal solid waste incorporating bounding surface plasticity and reinforcing effect
15. Evaluating elastic wave velocities in Brazilian municipal solid waste
16. Seismic Stability Analysis of Municipal Solid Waste Landfills Using Strain Dependent Dynamic Properties
17. Small-Strain and Large-Strain Modulus Measurements with a Consolidation Device
18. Cyclic Simple Shear Testing of Degraded Municipal Solid Waste from California Under Constant Volume and Constant Load Conditions
19. Measurement of static and dynamic properties of municipal solid waste at Mavallipura landfill site, India
20. Effect of confining stress and loading frequency on dynamic behavior of municipal solid waste in Kahrizak landfill
21. Laboratory studies on effect of fiber content on dynamic characteristics of municipal solid waste
22. Comparison of direct shear and simple shear responses of municipal solid waste in USA
23. Towards developing a representative biochemical methane potential (BMP) assay for landfilled municipal solid waste – A review
24. Seismic analysis of landfill considering the effect of GM-GCL interface within liner
25. Mechanical Stability at Landfill Scale
26. Dynamic Characterization of Municipal Solid Waste by In Situ and Laboratory Tests
27. Constant load and constant volume response of municipal solid waste in simple shear
28. Response of Municipal Solid Waste to Mechanical Compression
29. Dynamic characterisation of municipal solid waste by SDMT
30. Dynamic Properties of Municipal Solid Waste and Amplification of Landfill Site
31. Seismic Analysis of Municipal Solid Waste Dumps: Site Specific Case Studies From Delhi, India
32. Field and large scale laboratory studies on dynamic properties of emplaced municipal solid waste from two dump sites at Delhi, India
33. Characterizing a Brazilian sanitary landfill using geophysical seismic techniques
34. Dynamic Behaviour of MSW Materials Under Cyclic Triaxial Testing: A Case of Kahrizak Landfill, Tehran, Iran
35. Seismic characterization and dynamic site response of a municipal solid waste landfill in Bangalore, India
36. Field Testing Method for Evaluating the Small-Strain Shear Modulus and Shear Modulus Nonlinearity of Solid Waste
37. Seismic Design of Waste Containment Systems
38. In-situ assessment of the dynamic properties of municipal solid waste at a landfill in texas
39. Development of Model for Shear-Wave Velocity of Municipal Solid Waste
40.
41. Seismic Design of Waste Containment Systems
42. An Experimental Setup for Simultaneous Physical, Geotechnical, and Biochemical Characterization of Municipal Solid Waste Undergoing Biodegradation in the Laboratory
43. Mechanical properties of Municipal Solid Waste by SDMT
44. Simplified Methodology for Consideration of Two-Dimensional Dynamic Response of Levees in Liquefaction-Triggering Evaluation
45. 11th Peck Lecture: Predesign Geotechnical Investigation for the OII Superfund Site Landfill
46. Dynamic constitutive model for soils considering asymmetry of skeleton curve
47. Factors Influencing Long-Term Settlement of Municipal Solid Waste in Laboratory Bioreactor Landfill Simulators
48. Lessons Learned from Case Histories of Dynamic Compaction at Municipal Solid Waste Sites
49. Drained response of municipal solid waste in large-scale triaxial shear testing
50. Compositional effects on the dynamic properties of municipal solid waste
51. Physical Characterization of Municipal Solid Waste for Geotechnical Purposes
52. Large-scale direct shear testing of municipal solid waste
53. LABORATORY TESTS ON MECHANICAL PROPERTIES OF MUNISIPAL SOLID WASTE
54. Damping formulation for nonlinear 1D site response analyses
55. Shear Strength of Municipal Solid Waste
56. Seismic Behavior and Dynamic Site Response of Municipal Solid Waste Landfill in India

View Options

Get Access

Login options

Check if you access through your login credentials or your institution to get full access on this article.

Subscribe

Click on the button below to subscribe to Canadian Geotechnical Journal

Purchase options

Purchase this article to get full access to it.

Restore your content access

Enter your email address to restore your content access:

Note: This functionality works only for purchases done as a guest. If you already have an account, log in to access the content to which you are entitled.

View options

PDF

View PDF

Full Text

View Full Text

Media

Media

Other

Tables

Share Options

Share

Share the article link

Share on social media