Cookies Notification

We use cookies to improve your website experience. To learn about our use of cookies and how you can manage your cookie settings, please see our Cookie Policy.

Antidiabetic potential of oleanolic acid from Ligustrum lucidum Ait.

Publication: Canadian Journal of Physiology and Pharmacology
19 November 2007


Ligustrum lucidum Ait. has been used in traditional Chinese medicine for over 1000 years because of its anti-tumor, antimutagenic, antidiabetic, and hepatoprotective properties. The aim of this study was to determine whether oleanolic acid (OA) is the principal active compound of L. lucidum responsible for its antidiabetic properties, and to examine its effect on the expression of thyroid hormones and insulin secretion, thus revealing the mechanism by which L. lucidum modulates insulin levels in diabetes. When rats with streptozotocin-induced diabetes were treated with OA (100 and 200 mg/kg body mass per day, for 40 days), the changes in blood glucose levels and in oral glucose tolerance tests showed that hypoglycemia was more pronounced in OA-treated groups than in the diabetic control rats, and that the levels of triglyceride, total cholesterol, and low-density lipoportein cholesterol in OA-treated rats were lower than those in the diabetic control rats, whose high-density lipoprotein cholesterol increased. OA-treated rats also gained weight, and exhibited increased serum insulin levels. In contrast, OA treatment did not effect the levels of thyroid hormone or TSH in rats with streptozotocin-induced diabetes. These results indicate that OA has hypoglycemic and hypolipidemic effects. OA treatment might stimulate insulin release, and consequently, results in the modulation of glucose levels and regulation of lipid metabolism.


Le Ligustrum lucidum Ait. est utilisé en médecine chinoise traditionnelle depuis plus de 1000 ans pour ses propriétés antitumorales, antimutagènes, antidiabétiques et hépatoprotectrices. La présente étude a pour but de déterminer si l’acide oléanolique (AO) est le principal composé actif de L. lucidum à l’origine de ses propriétés antidiabétiques, et d’examiner son effet sur l’expression des hormones thyroïdiennes et la sécrétion d’insuline afin d’identifier le mécanisme par lequel L. lucidum module les taux d’insuline chez les diabétiques. Chez des rats rendus diabétiques par streptozotocine et traités avec de l’AO (100 et 200 mg/kg par jour, pendant 40 jours), les modifications du glucose sanguin et les résultats du test de tolérance au glucose ont montré que les groupes traités à l’OA ont eu une hypoglycémie plus marquée que celle des rats diabétiques témoins, et que les taux de TG, de TC et de LDL-c des rats traités à l’OA ont été plus faibles que ceux des rats diabétiques témoins, alors que la teneur en HDL-c augmenté. L’AO a aussi provoqué un gain de poids corporel des rats. De plus, les rats traités à l’AO ont montré de plus hauts taux d’insuline. À l’opposé, le traitement à l’AO n’a pas eu d’effet sur les taux d’hormone thyroïdienne et de TSH chez les rats rendus diabétiques par STZ. Ces résultats ont indiqué que l’AO présente une activité hypoglycémique et hypolipidémique. Le traitement à l’AO pourrait stimuler la libération d’insuline et ainsi entraîner la modulation des taux de glucose et la régulation du métabolisme des lipides.

Get full access to this article

View all available purchase options and get full access to this article.


Andrade-Cetto, A., and Wiedenfeld, H. 2001. Hypoglycemic effect of Cecropia obtusifolia on streptozotocin diabetic rats. J. Ethnopharmacol. 78: 145–149.
Gotto, A.M. 2001. Low high-density lipoprotein cholesterol as a risk factor in coronary heart disease. Circulation, 103: 2213–2218.
Assmann, G., Cullen, P., Erbey, J., Ramey, D.R., Kannenberg, F., and Schulte, H. 2006. Plasma sitosterol elevations are associated with an increased incidence of coronary events in men: results of a nested case-control analysis of the Prospective Cardiovascular Munster (PROCAM) study. Nutr. Metab. Cardiovasc. Dis. 16: 13–21.
Benwahhoud, M., Jouad, H., Eddouks, M., and Lyoussi, B. 2001. Hypoglycemic effect of Suaeda fruticosa in streptozotocin induced diabetic rats. J. Ethnopharmacol. 76: 35–38.
Beylot, M., Martin, C., Laville, M., Riou, J.P., Cohen, R., and Mornex, R. 1991. Lipolytic and ketogenic fluxes in human hyperthyroidism. J. Clin. Endocrinol. Metab. 73: 42–49.
Bhattacharyya, A., and Wiles, P.G. 1999. Diabetic ketoacidosis precipitated by thyrotoxicosis. Postgrad. Med. J. 75: 291–292.
Corti, M.C., Guralnik, J.M., Salive, M.E., Harris, T., Field, T.S., Wallace, R.B., et al. 1995. HDL cholesterol predicts coronary heart disease mortality in older persons. JAMA, 274: 539–544.
Dimitriadis, G.D., and Raptis, S.A. 2001. Thyroid hormone excess and glucose intolerance. Exp. Clin. Endocrinol. Diabetes, 109(Suppl. 2): S225–239.
Fan, Q.H., Hou, Y.L., Zhu, A.H., Lu, L.X., and Feng, J.Q. 2004. Comparing the effects of different preparations of Fructus ligustri lucid on enhancing white blood cell and anti-hypoxia ability. Northwest Pharmaceutical J. 19: 20–22.
Genest, J.J., Jr., Martin-Munley, S.S., McNamara, J.R., Ordovas, J.M., Jenner, J., Silberman, S.R., et al. 1992. Familial lipoprotein disorders in patients with premature coronary heart disease. Circulation, 85: 2025–2033.
Hao, Z.Q., Hang, B.Q., and Wang, Y. 1992. Study of Ligustrum lucidum Ait. on decreasing blood glucose. Chinese Materia Medica. 17: 429–431.
Junod, A., Lambert, A.E., Orci, L., Pictet, R., Gonet, A.E., and Renold, A.E. 1967. Studies of the diabetogenic action of streptozotocin. Proc. Soc. Exp. Biol. Med. 126: 201–205.
Latha, M., and Pari, L. 2003. Modulatory effect of Scoparia dulcis in oxidative stress-induced lipid peroxidation in streptozocin diabetic rats. J. Med. Food, 6: 379–386.
Lautt, W.W. 1999. The Hiss story overview: a novel hepatic neurohumoral regulation of peripheral insulin sensitivity in health and diabetes. Can. J. Physiol. Pharmacol. 77: 553–562.
Ma, Z.X., Pu, J.Z., and Sun, Z.Y. 2003. The extracts method oleanolic acid from Ligustrum lucidum Ait. [Chinese]. Acta Acad. Med. Zunyi, 26: 474–475.
Machackova, J., Barta, J., and Dhalla, N.S. 2005. Molecular defects in cardiac myfibrillar proteins due to thyroid hormone imbalance and diabeties. Can. J. Physiol. Pharmacol. 83: 1071–1091.
Maia, J.L, Lima-Junior, R.C.P., Melo, C.M., David, J.P, David, J.M., et al. 2006. Oleanolic acid, a pentacyclic triterpene attenuates capsaicin-induced nociception in mice: possible mechanisms. Pharmacol. Res. 54: 282–286.
Moon, S.W., Hahm, J.R., Lee, G.W., Kang, M.Y., Jung, J.H., Jung, T.S., et al. 2006. A case of hyperglycemic hyperosmolar state associated with Graves' hyperthyroidism: a case report. J. Korean Med. Sci. 21: 765–767.
Morrison, W.L., Gibson, J.N., Jung, R.T., and Rennie, M.J. 1988. Skeletal muscle and whole body protein turnover in thyroid disease. Eur. J. Clin. Invest. 18: 62–68.
Nijs, H.G., Radder, J.K., Foolich, M., and Krans, H.M. 1989. Increased insulin action and clearance in hyperthyroid newly diagnosed IDDM patient. Restoration to normal with antithyroid treatment. Diabetes Care, 12: 319–324.
Pertsov, S.S. 2006. Effect of melatonin on the thymus, adrenal glands, and spleen in rats during acute stress. Bull. Exp. Biol. Med. 141: 292–295.
Raboudi, N., Arem, R., Jones, R.H., Chap, Z., Pena, J., Chou, J., and Field, J.B. 1989. Fasting and postabsorptive hepatic glucose and insulin metabolism in hyperthyroidism. Am. J. Physiol. Endocrinol. Metab. 256: 159–166.
Randin, J.P., Tappy, L., Scazziga, B., Jequier, E., and Felber, J.P. 1986. Insulin sensitivity and exogenous insulin clearance in Graves' disease. Measurement by the glucose clamp technique and indirect calorimetry. Diabetes, 35: 178–181.
Ravi, K., Ramachandran, B., and Subramanian, S. 2004. Protective effect of Eugenia jambolana seed kernel on tissue antioxidants in streptozotocin induced diabetic rats. Biol. Pharm. Bull. 27: 1212–1217.
Rubins, H.B., Robins, S.J., Collins, D., Iranmanesh, A., Wilt, T.J., Mann, D., et al. 1995. Department of veterans affairs HDL intervention trial study group. Distribution of lipids in 8500 men with coronary artery disease. Am. J. Cardiol. 75: 1196–1201.
Scheen, A.J. 2000. From obesity to diabetes: why, when and who? Acta Clin. Belg. 55: 9–15.
Seidell, J.C. 2000. Obesity, insulin resistance and diabetes—a worldwide epidemic. Br. J. Nutr. 83: 5–8.
Sezik, E., Aslan, M., Yesilada, E., and Ito, S. 2005. Hypoglycaemic activity of Gentiana olivieri and isolation of the active constituent through bioassay-directed fractionation techniques. Life Sci. 76: 1223–1238.
Sharma, S.B., Nasir, A., Prabhu, K.M., Murthy, P.S., and Dev, G. 2003. Hypoglycaemic and hypolipidemic effect of ethanolic extract of seeds of Eugenia jambolana in alloxan-induced diabetic rabbits. J. Ethnopharmacol. 85: 201–206.
Taskinen, M.R. 2002. Diabetic dyslipidemia. Atherosclerosis, 3: 47–51.
Trinder, P. 1969. Determination of blood glucose using an oxidase peroxidase system with a non-carcinogenic chromogen. J. Clin. Pathol. 22: 158–161.
Wang, Z.X., Gao, B.Z., Xu, B.Y., and Huang, G.C. 1991. Study on antimutagenic effect of Ligustrum lucidum Ait. by drosophila test. Fujian J. Traditional Chin. Med. 22: 50–51.
Whitney, E.J., Krasuski, R.A., Personius, B.E., Michalek, J.E., Maranian, A.M., Kolasa, M.W., et al. 2005. A randomized trial of a strategy for increasing high density lipoprotein cholesterol levels: effects on progression of coronary heart disease and clinical events. Ann. Intern. Med. 142: 45–104.
Xiang, M., and Gu, Z.L. 2002. Antitumor effect of Ligustrum lucidum Ait. extract in vivo. Jiangsu Medical J. Clin. Res. 10: 13–15.
Yin, Y.S., and Yu, C.S. 1993. Study on chemical components and hepatoprotective properties of Ligustrum lucidum Ait. Chin. Traditional Patent Med. 15: 18–19.
Zhang, P.X., Sang, J., Sheng, Y.L., Li, H.M., and Zhao, D.W. 2004. Serum pharmacological effect of FL on Hela cells. Heilongjiang Medicine Pharmacy, 27: 15–16.

Information & Authors


Published In

cover image Natural health product therapies
Canadian Journal of Physiology and Pharmacology
Volume 01Number 01April 2015
Pages: 1076 - 1083


Received: 30 November 2006
Version of record online: 19 November 2007


This article is one of a selection of papers published in this special issue (part 2 of 2) on the Safety and Efficacy of Natural Health Products.


Request permissions for this article.

Key Words

  1. hypoglycemic effect
  2. hypolipidemic effect
  3. Ligustrum lucidum
  4. oleanolic acid
  5. diabetes


  1. effet hypoglycémique
  2. effet hypolipidémique
  3. Ligustrum lucidum
  4. acide oléanolique
  5. diabète



Dawei Gao
Department of Biological Engineering, College of Environment and Chemistry Engineering, Yanshan University, Qinhuangdao 066004, China
Department of Biological Engineering, College of Environment and Chemistry Engineering, Yanshan University, Qinhuangdao 066004, China
College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
Ying Li
Department of Biological Engineering, College of Environment and Chemistry Engineering, Yanshan University, Qinhuangdao 066004, China
Zhihua Liu
College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
Zhiwei Liu
Department of Biological Engineering, College of Environment and Chemistry Engineering, Yanshan University, Qinhuangdao 066004, China
Yusheng Fan
College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
Zengsheng Han
Department of Biological Engineering, College of Environment and Chemistry Engineering, Yanshan University, Qinhuangdao 066004, China
Jian Li
Department of Biological Engineering, College of Environment and Chemistry Engineering, Yanshan University, Qinhuangdao 066004, China
Kun Li
College of Basic Medicine, Jiamusi University, Jiamusi 154007, China

Metrics & Citations


Other Metrics


Cite As

Export Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

1. Oleanolic acid alleviates obesity‐induced skeletal muscle atrophy via the PI3K /Akt signaling pathway
2. Synthesis, Cytotoxicity and Molecular Docking of New Hybrid Compounds by Combination of Curcumin with Oleanolic Acid
3. Processing-structure–property relationships of oleanolic acid loaded PLGA fiber membranes
4. Antidiabetic Potential of Commonly Available Fruit Plants in Bangladesh: Updates on Prospective Phytochemicals and Their Reported MoAs
5. Preliminary results on the separation of the different parts of Ligustrum lucidum Ait fruit and the main bioactive compounds analysis
6. Hypoglycemic natural products with in vivo activities and their mechanisms: a review
7. Pentacyclic triterpene oleanolic acid protects against cardiac aging through regulation of mitophagy and mitochondrial integrity
8. Transcriptome study of oleanolic acid in the inhibition of breast tumor growth based on high-throughput sequencing
9. Ethnopharmacological, Phytochemical, Pharmacological, and Toxicological Review on Senna auriculata (L.) Roxb.: A Special Insight to Antidiabetic Property
10. Self-assembled micellar nanostructures of ursolic acid-polyethylene glycol (UA-PEG) conjugate as efficient drug transporter system
11. Determination of Ursolic Acid in Extracts From Ligustri lucidum Fruit Using an Electrochemical Method
13. Screening of Biological Activities of Ligustrum lucidum Berries: A Comparative Approach
14. The protective effect of neonatal oral administration of oleanolic acid against the subsequent development of fructose-induced metabolic dysfunction in male and female rats
15. Anti-corrosion and Anti-bacteria Property of Modified Pomegranate Peel Extract
16. Anti-diabetic effect of betulinic acid on streptozotocin-nicotinamide induced diabetic male mouse model
17. Inhibition of Hypoxia-Induced Retinal Angiogenesis by Specnuezhenide, an Effective Constituent of Ligustrum lucidum Ait., through Suppression of the HIF-1α/VEGF Signaling Pathway
18. Antidiabetic activity of Helicteres angustifolia root
19. Oleanolic, Ursolic, and Betulinic Acids as Food Supplements or Pharmaceutical Agents for Type 2 Diabetes: Promise or Illusion?
20. Oleanolic acid and N -acetylcysteine ameliorate diabetic nephropathy through reduction of oxidative stress and endoplasmic reticulum stress in a type 2 diabetic rat model
21. Quality assessment of Fructus Ligustri Lucidi by the simultaneous determination of six compounds and chemometric analysis
22. Synthesis and Evaluation of Novel Oleanolic Acid Derivatives as Potential Antidiabetic Agents
23. Integrated LC/MS and GC/MS Metabolomics Data for the Evaluation of Protection Function of Fructus Ligustri Lucidi on Mouse Liver
24. Oleanolic acid improves hepatic insulin resistance via antioxidant, hypolipidemic and anti-inflammatory effects
25. Oleanolic Acid Diminishes Liquid Fructose-Induced Fatty Liver in Rats: Role of Modulation of Hepatic Sterol Regulatory Element-Binding Protein-1c-Mediated Expression of Genes Responsible for De Novo Fatty Acid Synthesis
26. Ultrasound-assisted extraction of oleanolic acid and ursolic acid from Ligustrum lucidum Ait
27. Curative Effects of Oleanolic Acid on Formed Hypertrophic Scars in the Rabbit Ear Model
28. Lipid-Regulating Effect of Traditional Chinese Medicine: Mechanisms of Actions
29. Antidiabetic Effects of Corni Fructus Extract in Streptozotocin-Induced Diabetic Rats
30. Development and validation of an HPTLC method for the analysis of oleanolic acid from the roots of Helicteres isora Linn.
31. Formulation, Biological and Pharmacokinetic Studies of Sucrose Ester-Stabilized Nanosuspensions of Oleanolic Acid
32. Effects of NaCl and pH on 2-hydroxypropyl-beta-cyclodextrin inclusion with oleanolic acid
33. Microwave-Assisted Extraction of Oleanolic Acid and Ursolic Acid from Ligustrum lucidum Ait
34. Evaluation of the Potential Hypoglycemic and Beta-Cell Protective Constituents Isolated from Corni Fructus To Tackle Insulin-Dependent Diabetes Mellitus
35. Seasonal variations in metabolite profiling of the fruits of Ligustrum lucidum Ait
36. Synthesis, biology and clinical significance of pentacyclic triterpenes: a multi-target approach to prevention and treatment of metabolic and vascular diseases
37. Synergistic antihyperglycemic effects between plant-derived oleanolic acid and insulin in streptozotocin-induced diabetic rats
38. Anti-glycative effects of oleanolic acid and ursolic acid in kidney of diabetic mice
39. Oleanolic Acid, a Plant Triterpenoid, Significantly Improves Survival and Function of Islet Allograft
40. Hypoglycemic activity of constituents from Astianthus viminalis in normal and streptozotocin-induced diabetic mice
41. Antidiabetic and antioxidant effects of oleanolic acid from Ligustrum lucidum Ait in alloxan‐induced diabetic rats
42. Study of the extraction, purification and antidiabetic potential of ursolic acid from Cornus officinalis Sieb. et Zucc.
43. Botanicals as epigenetic modulators for mechanisms contributing to development of metabolic syndrome

View Options

Get Access

View options


View PDF

Full Text

View Full Text





Share Options


Share the article link

Share on social media