Cookies Notification

We use cookies to improve your website experience. To learn about our use of cookies and how you can manage your cookie settings, please see our Cookie Policy.
×

Effect of 7 days of exercise on exogenous carbohydrate oxidation and insulin resistance in children with obesity

Publication: Applied Physiology, Nutrition, and Metabolism
2 February 2018

Abstract

The capacity to match carbohydrate (CHO) oxidation with CHO availability (deemed metabolic flexibility (MetFlex)) may be important for type 2 diabetes prevention. In adults, impaired MetFlex is associated with insulin resistance (IR), which can be improved with as little as 7 days of exercise. Whether this occurs similarly in children is unknown. We hypothesized that 7 consecutive days of exercise would improve MetFlex and IR in children with obesity. Twelve children (8 boys, 4 girls) completed 2 study visits before (PRE) and 2 study visits after (POST) exercise training. At visit 1, fasting blood was collected, and anthropometry and maximal oxygen uptake were assessed. At visit 2, a 13C-enriched CHO drink was ingested before exercise (3 × 20 min) at ∼59% maximal oxygen uptake. Exogenous CHO oxidative efficiency, used as a surrogate measurement of MetFlex, was calculated from breath samples. During training, participants alternated between continuous and high-intensity interval cycling sessions at home under supervision. In spite of good training adherence, there was no improvement in MetFlex (PRE: 20.7% ± 1.8%, POST: 18.9% ± 4.9%, p = 0.22) or homeostasis model assessment of insulin resistance (PRE: 8.7 ± 4.6, POST: 8.1 ± 6.0, p = 0.51). Future research should investigate exercise volume, sex, and pubertal effects on the early responsiveness of MetFlex to exercise therapy.

Résumé

L’aptitude à apparier l’oxydation des sucres (« CHO ») à leur disponibilité (flexibilité métabolique (« MetFlex »)) peut s’avérer importante dans la prévention du diabète de type 2. Chez les adultes, un dérèglement de la MetFlex est associé à l’insulinorésistance (« IR ») qui peut être améliorée avec aussi peu que 7 jours d’exercice physique. On ne sait pas si cela se produit chez les enfants. Nous posons l’hypothèse selon laquelle 7 jours d’exercice physique améliorent la MetFlex et l’IR chez des enfants obèses. Douze enfants (8 garçons, 4 filles) participent à deux séances avant (« PRE ») et à deux autres séances après (« POST ») un entraînement physique. Au cours de la séance 1, on prélève un échantillon de sang à jeun, on mesure des caractéristiques physiques et on évalue la consommation maximale d’oxygène. Au cours de la séance 2, les enfants consomment une boisson sucrée enrichie en 13C avant de réaliser un exercice (3 × 20 min) sollicitant ∼59 % de la consommation maximale d’oxygène. On utilise des échantillons du souffle respiratoire pour calculer l’efficacité oxydative du CHO exogène qui est une mesure de substitution de la MetFlex. Durant la période d’entraînement physique sous supervision au domicile, les participants alternent entre des séances de pédalage en continu et par intervalles d’intensité élevée. Nonobstant une bonne persévérance à l’entraînement, on n’observe pas d’amélioration de la MetFlex (PRE : 20,7 ± 1,8 %, POST : 18,9 ± 4,9 %, p = 0,22) et de homeostasis model assessment of insulin resistance (PRE : 8,7 ± 4,6, POST : 8,1 ± 6,0, p = 0,51). Les prochaines études devraient analyser le volume d’exercice physique, le sexe et les effets de la puberté sur la réactivité précoce de la MetFlex à la thérapie par l’exercice physique. [Traduit par la Rédaction]

Get full access to this article

View all available purchase options and get full access to this article.

References

Álvarez C., Ramírez-Campillo R., Ramírez-Vélez R., and Izquierdo M. 2017. Effects and prevalence of nonresponders after 12 weeks of high-intensity interval or resistance training in women with insulin resistance: a randomized trial. J. Appl. Physiol. (1985), 122(4): 985–996.
Apostolopoulou M., Strassburger K., Herder C., Knebel B., Kotzka J., Szendroedi J., et al. 2016. Metabolic flexibility and oxidative capacity independently associate with insulin sensitivity in individuals with newly diagnosed type 2 diabetes. Diabetologia, 59(10): 2203–2207.
Chu L., Riddell M.C., Takken T., and Timmons B.W. 2011. Carbohydrate intake reduces fat oxidation during exercise in obese boys. Eur. J. Appl. Physiol. 111(12): 3135–3141.
Chu L., Morrison K.M., Riddell M.C., Raha S., and Timmons B.W. 2016. No difference in exogenous carbohydrate oxidation during exercise in children with and without impaired glucose tolerance. J. Appl. Physiol. (1985), 121(3): 724–729.
Chu L., Morrison K.M., Riddell M.C., Raha S., and Timmons B.W. 2018. Validity and reliability of a novel metabolic flexibility test in children wtih obesity. J. Appl. Physiol. (1985), 124(4): 1062–1070.
Dabelea D., Mayer-Davis E.J., Saydah S., Imperatore G., Linder B., Divers J., et al. 2014. Prevalence of type 1 and type 2 diabetes among children and adolescents from 2001 to 2009. JAMA, 311(17): 1778–1786.
Emoto M., Nishizawa Y., Maekawa K., Hiura Y., Kanda H., Kawagishi T., et al. 1999. Homeostasis model assessment as a clinical index of insulin resistance in type 2 diabetic patients treated with sulfonylureas. Diabetes Care, 22(5): 818–822.
Fedewa M.V., Gist N.H., Evans E.M., and Dishman R.K. 2014. Exercise and insulin resistance in youth: a meta-analysis. Pediatrics, 133(1): e163–e174.
Fisher G., Brown A.W., Bohan Brown M.M., Alcorn A., Noles C., Winwood L., et al. 2015. High intensity interval- vs moderate intensity- training for improving cardiometabolic health in overweight or obese males: a randomized controlled trial. PloS ONE, 10(10): e0138853.
Fletcher G., Eves F.F., Glover E.I., Robinson S.L., Vernooij C.A., Thompson J.L., and Wallis G.A. 2017. Dietary intake is independently associated with the maximal capacity for fat oxidation during exercise. Am. J. Clin. Nutr. 105(4): 864–872.
Galgani J.E., Heilbronn L.K., Azuma K., Kelley D.E., Albu J.B., Pi-Sunyer X., et al. 2008a. Metabolic flexibility in response to glucose is not impaired in people with type 2 diabetes after controlling for glucose disposal rate. Diabetes, 57(4): 841–845.
Galgani J.E., Moro C., and Ravussin E. 2008b. Metabolic flexibility and insulin resistance. Am. J. Physiol. Endocrinol. Metab. 295(5): E1009–E1017.
Hamman R.F., Bell R.A., Dabelea D., D’Agostino R.B., Dolan L., Imperatore G., et al. 2014. The SEARCH for Diabetes in Youth study: rationale, findings, and future directions. Diabetes Care, 37(12): 3336–3344.
Jelleyman C., Yates T., O’Donovan G., Gray L.J., King J.A., Khunti K., and Davies M.J. 2015. The effects of high-intensity interval training on glucose regulation and insulin resistance: a meta-analysis. Obes. Rev. 16(11): 942–961.
Jeukendrup A.E., Mensink M., Saris W.H., and Wagenmakers A.J. 1997. Exogenous glucose oxidation during exercise in endurance-trained and untrained subjects. J. Appl. Physiol. (1985), 82(3): 835–840.
Kelley D.E., Goodpaster B., Wing R.R., and Simoneau J.A. 1999. Skeletal muscle fatty acid metabolism in association with insulin resistance, obesity, and weight loss. Am. J. Physiol. 277(6 Pt 1): E1130–E1141.
Kim Y. and Park H. 2013. Does regular exercise without weight loss reduce insulin resistance in children and adolescents? Int. J. Endocrinol. 2013: 402592.
Kirwan J.P., Solomon T.P., Wojta D.M., Staten M.A., and Holloszy J.O. 2009. Effects of 7 days of exercise training on insulin sensitivity and responsiveness in type 2 diabetes mellitus. Am. J. Physiol. Endocrinol. Metab. 297(1): E151–E156.
Krzentowski G., Pirnay F., Luyckx A.S., Lacroix M., Mosora F., and Lefebvre P.J. 1984. Effect of physical training on utilization of a glucose load given orally during exercise. Am. J. Physiol. 246(5 Pt 1): E412–E417.
Lee S. and Kim Y. 2013. Effects of exercise alone on insulin sensitivity and glucose tolerance in obese youth. Diabetes Metab. J. 37(4): 225–232.
Malin S.K., Haus J.M., Solomon T.P.J., Blaszczak A., Kashyap S.R., and Kirwan J.P. 2013. Insulin sensitivity and metabolic flexibility following exercise training among different obese insulin-resistant phenotypes. Am. J. Physiol. Endocrinol. Metab. 305(10): E1292–E1298.
Mandarino L.J., Consoli A., Jain A., and Kelley D.E. 1996. Interaction of carbohydrate and fat fuels in human skeletal muscle: impact of obesity and NIDDM. Am. J. Physiol. 270(3 Pt 1): E463–E470.
Matthews D.R., Hosker J.P., Rudenski A.S., Naylor B.A., Treacher D.F., and Turner R.C. 1985. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia, 28(7): 412–419.
Meex R.C.R., Schrauwen-Hinderling V.B., Moonen-Kornips E., Schaart G., Mensink M., Phielix E., et al. 2010. Restoration of muscle mitochondrial function and metabolic flexibility in type 2 diabetes by exercise training is paralleled by increased myocellular fat storage and improved insulin sensitivity. Diabetes, 59(3): 572–579.
Mikus C.R., Oberlin D.J., Libla J., Boyle L.J., and Thyfault J.P. 2012. Glycaemic control is improved by 7 days of aerobic exercise training in patients with type 2 diabetes. Diabetologia, 55(5): 1417–1423.
Mirwald R.L., Baxter-Jones A.D.G., Bailey D.A., and Beunen G.P. 2002. An assessment of maturity from anthropometric measurements. Med. Sci. Sports Exerc. 34(4): 689–694.
Mosora F., Lefebvre P., Pirnay F., Lacroix M., Luyckx A., and Duchesne J. 1976. Quantitative evaluation of the oxidation of an exogenous glucose load using naturally labeled 13C-glucose. Metabolism, 25(12): 1575–1582.
O’Gorman D.J., Karlsson H.K.R., McQuaid S., Yousif O., Rahman Y., Gasparro D., et al. 2006. Exercise training increases insulin-stimulated glucose disposal and GLUT4 (SLC2A4) protein content in patients with type 2 diabetes. Diabetologia, 49(12): 2983–2992.
Péronnet F. and Massicotte D. 1991. Table of nonprotein respiratory quotient: an update. Can. J. Sport Sci. 16(1): 23–29.
Riddell M.C., Bar-Or O., Hollidge-Horvat M., Schwarcz H.P., and Heigenhauser G.J. 2000. Glucose ingestion and substrate utilization during exercise in boys with IDDM. J. Appl. Physiol. (1985), 88(4): 1239–1246.
Sarafidis P.A., Lasaridis A.N., Nilsson P.M., Pikilidou M.I., Stafilas P.C., Kanaki A., et al. 2007. Validity and reproducibility of HOMA-IR, 1/HOMA-IR, QUICKI and McAuley’s indices in patients with hypertension and type II diabetes. J. Hum. Hypertens. 21(9): 709–716.
Schoeller D.A., Klein P.D., Watkins J.B., Heim T., and MacLean W.C. 1980. 13C abundances of nutrients and the effect of variations in 13C isotopic abundances of test meals formulated for 13CO2 breath tests. Am. J. Clin. Nutr. 33(11): 2375–2385.
Timmons B.W., Bar-Or O., and Riddell M.C. 2003. Oxidation rate of exogenous carbohydrate during exercise is higher in boys than in men. J. Appl. Physiol. (1985), 94(1): 278–284.
Timmons B.W., Bar-Or O., and Riddell M.C. 2007a. Influence of age and pubertal status on substrate utilization during exercise with and without carbohydrate intake in healthy boys. Appl. Physiol. Nutr. Metab. 32(3): 416–425.
Timmons B.W., Bar-Or O., and Riddell M.C. 2007b. Energy substrate utilization during prolonged exercise with and without carbohydrate intake in preadolescent and adolescent girls. J. Appl. Physiol. (1985), 103(3): 995–1000.
Winnick J.J., Sherman W.M., Habash D.L., Stout M.B., Failla M.L., Belury M.A., and Schuster D.P. 2008. Short-term aerobic exercise training in obese humans with type 2 diabetes mellitus improves whole-body insulin sensitivity through gains in peripheral, not hepatic insulin sensitivity. J. Clin. Endocrinol. Metab. 93(3): 771–778.

Supplementary Material

Supplementary data (apnm-2017-0358suppla.docx)

Information & Authors

Information

Published In

cover image Applied Physiology, Nutrition, and Metabolism
Applied Physiology, Nutrition, and Metabolism
Volume 43Number 7July 2018
Pages: 677 - 683

History

Received: 7 June 2017
Accepted: 23 January 2018
Accepted manuscript online: 2 February 2018
Version of record online: 2 February 2018

Permissions

Request permissions for this article.

Key Words

  1. metabolic flexibility
  2. children
  3. obesity
  4. exercise training
  5. insulin resistance

Mots-clés

  1. flexibilité métabolique
  2. enfants
  3. obésité
  4. entraînement physique
  5. insulinorésistance

Authors

Affiliations

Lisa Chu
Child Health and Exercise Medicine Program, Department of Pediatrics, McMaster University, Hamilton, ON L8S 4K1, Canada.
Katherine M. Morrison
Department of Pediatrics, McMaster University, Hamilton, ON L8S 4K1, Canada.
Michael C. Riddell
School of Kinesiology & Health Science, Muscle Health Research Centre, York University, Toronto, ON M3J 1P3, Canada.
Sandeep Raha
Department of Pediatrics, McMaster University, Hamilton, ON L8S 4K1, Canada.
Brian W. Timmons [email protected]
Child Health and Exercise Medicine Program, Department of Pediatrics, McMaster University, Hamilton, ON L8S 4K1, Canada.

Notes

Copyright remains with the author(s) or their institution(s). Permission for reuse (free in most cases) can be obtained from RightsLink.

Metrics & Citations

Metrics

Other Metrics

Citations

Cite As

Export Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

There are no citations for this item

View Options

Get Access

Login options

Check if you access through your login credentials or your institution to get full access on this article.

Subscribe

Click on the button below to subscribe to Applied Physiology, Nutrition, and Metabolism

Purchase options

Purchase this article to get full access to it.

Restore your content access

Enter your email address to restore your content access:

Note: This functionality works only for purchases done as a guest. If you already have an account, log in to access the content to which you are entitled.

View options

PDF

View PDF

Full Text

View Full Text

Media

Media

Other

Tables

Share Options

Share

Share the article link

Share on social media