Cookies Notification

We use cookies to improve your website experience. To learn about our use of cookies and how you can manage your cookie settings, please see our Cookie Policy.
×

Fasting upregulates adipose triglyceride lipase and hormone-sensitive lipase levels and phosphorylation in mouse kidney

Publication: Biochemistry and Cell Biology
30 March 2015

Abstract

Circulating non-esterified fatty acids (NEFA) rise during fasting and are taken up by the kidneys, either directly from the plasma or during re-uptake of albumin from glomerular filtrate, and are stored as triacylglycerol (TAG). Subsequent utilization of stored fatty acids requires their hydrolytic release from cellular lipid droplets, but relatively little is known about renal lipolysis. We found that total [3H]triolein hydrolase activity of kidney lysates was significantly increased by 15% in the fasted state. Adipose triglyceride lipase (Atgl) and hormone-sensitive lipase (Hsl) mRNA expression was time-dependently increased by fasting, along with other fatty acid metabolism genes (Pparα, Cd36, and Aox). ATGL and HSL protein levels were also significantly induced (by 239 ± 7% and 322 ± 8%, respectively). Concomitant with changes in total protein levels, there was an increase in ATGL phosphorylation at the AMPK-regulated serine 406 site in the 14-3-3 binding motif, and an increase in HSL phosphorylation at serines 565 and 660 that are regulated by AMPK and PKA, respectively. Using immunofluorescence, we further demonstrate nearly ubiquitous expression of ATGL in the renal cortex with a concentration on the apical/lumenal surface of some cortical tubules. Our findings suggest a role for ATGL and HSL in kidney lipolysis.

Résumé

Les acides gras non-estérifiés (AGNE) circulants augmentent durant le jeûne et ils sont captés par les reins, soit directement à partir du plasma, ou durant la recapture de l’albumine à partir du filtrat glomérulaire, pour être entreposés sous forme de triacylglycérol (TAG). L’utilisation subséquente des acides gras entreposés requiert leur libération hydrolytique des gouttelettes lipidiques cellulaires, mais on connaît peu de chose sur la lipolyse rénale. Les auteurs ont trouvé que l’activité [3H]trioléine hydrolase de lysats de rein était significativement accrue de 15% durant le jeûne. L’expression de l’ARNm de la triglycéride lipase des tissus adipeux (Atgl) et de la lipase hormono-sensible (Hsl) était accrue en fonction du temps durant le jeûne, parallèlement à celle d’autres gènes du métabolisme des acides gras (Pparα, Cd36 et Aox). Les niveaux protéiques d’ATGL et de HSL étaient aussi significativement accrus (de 239 ± 7% et 322 ± 8%, respectivement). De façon concomitante aux changements du niveau de protéines totales, la phosphorylation d’ATGL régulée par l’AMPK était accrue sur la sérine 406 du motif de liaison 14-3-3, de même que la phosphorylation de HSL sur les sérines 565 et 660 qui sont respectivement régulées par l’AMPK et la PKA. À l’aide de l’immunofluorescence, les auteurs ont de plus démontré l’expression presque ubiquiste d’ATGL dans le cortex rénal, avec une concentration à la surface apicale/luminale de certains tubules corticaux. Leurs données suggèrent qu’ATGL et HSL jouent un rôle dans la lipolyse rénale. [Traduit par la Rédaction]

Get full access to this article

View all available purchase options and get full access to this article.

References

Ahmadian M., Abbott M.J., Tang T., Hudak C.S., Kim Y., Bruss M., et al. 2011. Desnutrin/ATGL is regulated by AMPK and is required for a brown adipose phenotype. Cell Metab. 13(6): 739–748.
Anthonsen M.W., Ronnstrand L., Wernstedt C., Degerman E., and Holm C. 1998. Identification of novel phosphorylation sites in hormone-sensitive lipase that are phosphorylated in response to isoproterenol and govern activation properties in vitro. J. Biol. Chem. 273(1): 215–221.
Bligh E.G. and Dyer W.J. 1959. A rapid method of total lipid extraction and purification. Can. J. Biochem. Phys. 37(8): 911–917.
Carmen G.Y. and Victor S.M. 2006. Signalling mechanisms regulating lipolysis. Cell Signal. 18(4): 401–408.
Davies S.P., Sim A.T., and Hardie D.G. 1990. Location and function of three sites phosphorylated on rat acetyl-CoA carboxylase by the AMP-activated protein kinase. Eur. J. Biochem. 187(1): 183–190.
Donsmark M., Langfort J., Holm C., Ploug T., and Galbo H. 2004. Contractions induce phosphorylation of the AMPK site Ser565 in hormone-sensitive lipase in muscle. Biochem. Biophys. Res. Commun. 316(3): 867–871.
Duncan R.E., Ahmadian M., Jaworski K., Sarkadi-Nagy E., and Sul H.S. 2007. Regulation of lipolysis in adipocytes. Annu. Rev. Nutr. 27: 79–101.
Duncan R.E., Sarkadi-Nagy E., Jaworski K., Ahmadian M., and Sul H.S. 2008. Identification and functional characterization of adipose-specific phospholipase A2 (AdPLA). J. Biol. Chem. 283(37): 25428–25436.
Garton A.J., Campbell D.G., Carling D., Hardie D.G., Colbran R.J., and Yeaman S.J. 1989. Phosphorylation of bovine hormone-sensitive lipase by the AMP-activated protein kinase. A possible antilipolytic mechanism. Eur. J. Biochem. 179(1): 249–254.
Guder W.G., Wagner S., and Wirthensohn G. 1986. Metabolic fuels along the nephron: pathways and intracellular mechanisms of interaction. Kidney Int. 29(1): 41–45.
Haemmerle G., Lass A., Zimmermann R., Gorkiewicz G., Meyer C., Rozman J., et al. 2006. Defective Lipolysis and Altered Energy Metabolism in Mice Lacking Adipose Triglyceride Lipase. Science, 312(5774): 734–737.
Hardie D.G., Ross F.A., and Hawley S.A. 2012. AMPK: a nutrient and energy sensor that maintains energy homeostasis. Nat. Rev. Mol. Cell Biol. 13(4): 251–262.
Hohenegger M. and Schuh H. 1980. Uptake and fatty acid synthesis by the rat kidney. Int. J. Biochem. 12(1–2): 169–172.
Holm C., Belfrage P., and Fredrikson G. 1987. Immunological evidence for the presence of hormone-sensitive lipase in rat tissues other than adipose tissue. Biochem. Biophys. Res. Commun. 148(1): 99–105.
Kamijo A., Kimura K., Sugaya T., Yamanouchi M., Hase H., Kaneko T., et al. 2002. Urinary free fatty acids bound to albumin aggravate tubulointerstitial damage. Kidney Int. 62(5): 1628–1637.
Krzystanek M., Pedersen T.X., Bartels E.D., Kjaehr J., Straarup E.M., and Nielsen L.B. 2010. Expression of apolipoprotein B in the kidney attenuates renal lipid accumulation. J. Biol. Chem. 285(14): 10583–10590.
Liu C.Y., Liang L.C., and Chang L.C. 1995. Differential responses of hormone-sensitive lipase gene to nutritional transition in adipose tissue, liver, and skeletal muscle of pigs. Biochem. Mol. Biol. Int. 36(3): 689–694.
Molina D.K. and DiMaio V.J. 2012. Normal organ weights in men: part II-the brain, lungs, liver, spleen, and kidneys. Am. J. Forensic Med. Pathol. 33(4): 368–372.
Nieth H. and Schollmeyer P. 1966. Substrate-utilization of the human kidney. Nature, 209(5029): 1244–1245.
Shen W.J., Patel S., Natu V., and Kraemer F.B. 1998. Mutational analysis of structural features of rat hormone-sensitive lipase. Biochemistry, 37(25): 8973–8979.
Smith A.J., Thompson B.R., Sanders M.A., and Bernlohr D.A. 2007. Interaction of the adipocyte fatty acid-binding protein with the hormone-sensitive lipase: regulation by fatty acids and phosphorylation. J. Biol. Chem. 282(44): 32424–32432.
Sun L., Halaihel N., Zhang W., Rogers T., and Levi M. 2002. Role of sterol regulatory element-binding protein 1 in regulation of renal lipid metabolism and glomerulosclerosis in diabetes mellitus. J. Biol. Chem. 277(21): 18919–18927.
Thomas M.E. and Schreiner G.F. 1993. Contribution of proteinuria to progressive renal injury: consequences of tubular uptake of fatty acid bearing albumin. Am. J. Nephrol. 13(5): 385–398.
Villena J.A., Roy S., Sarkadi-Nagy E., Kim K.H., and Sul H.S. 2004. Desnutrin, an adipocyte gene encoding a novel patatin domain-containing protein, is induced by fasting and glucocorticoids: ectopic expression of desnutrin increases triglyceride hydrolysis. J. Biol. Chem. 279(45): 47066–47075.
Wang Z., Ying Z., Bosy-Westphal A., Zhang J., Heller M., Later W., et al. 2012. Evaluation of specific metabolic rates of major organs and tissues: comparison between nonobese and obese women. Obesity, 20(1): 95–100.
Watt M.J., Holmes A.G., Pinnamaneni S.K., Garnham A.P., Steinberg G.R., Kemp B.E., and Febbraio M.A. 2006. Regulation of HSL serine phosphorylation in skeletal muscle and adipose tissue. Am. J. Physiol. Endocrinol. Metab. 290(3): E500–E508.
Zhai X.Y., Birn H., Jensen K.B., Thomsen J.S., Andreasen A., and Christensen E.I. 2003. Digital three-dimensional reconstruction and ultrastructure of the mouse proximal tubule. J. Am. Soc. Nephrol. 14(3): 611–619.
Zimmermann R., Strauss J.G., Haemmerle G., Schoiswohl G., Birner-Gruenberger R., Riederer M., et al. 2004. Fat mobilization in adipose tissue is promoted by adipose triglyceride lipase. Science, 306(5700): 1383–1386.

Supplementary Material

Supplementary data (bcb-2014-0150suppl.pdf)

Information & Authors

Information

Published In

cover image Biochemistry and Cell Biology
Biochemistry and Cell Biology
Volume 93Number 3June 2015
Pages: 262 - 267

History

Received: 7 November 2014
Revision received: 5 March 2015
Accepted: 17 March 2015
Accepted manuscript online: 30 March 2015
Version of record online: 30 March 2015

Permissions

Request permissions for this article.

Key Words

  1. kidney
  2. lipolysis
  3. adipose triglyceride lipase (ATGL)
  4. hormone-sensitive lipase (HSL)
  5. fasting
  6. nutrition

Mots-clés

  1. rein
  2. lipolyse
  3. triglycéride lipase des tissus adipeux (ATGL)
  4. lipase hormono-sensible (HSL)
  5. jeûne
  6. nutrition

Authors

Affiliations

Phillip M. Marvyn
University of Waterloo, Department of Kinesiology, Faculty of Applied Health Sciences, 200 University Avenue W., BMH 1110, Waterloo, ON N2L 3G1, Canada.
Ryan M. Bradley
University of Waterloo, Department of Kinesiology, Faculty of Applied Health Sciences, 200 University Avenue W., BMH 1110, Waterloo, ON N2L 3G1, Canada.
Emily B. Button
University of Waterloo, Department of Kinesiology, Faculty of Applied Health Sciences, 200 University Avenue W., BMH 1110, Waterloo, ON N2L 3G1, Canada.
Emily B. Mardian
University of Waterloo, Department of Kinesiology, Faculty of Applied Health Sciences, 200 University Avenue W., BMH 1110, Waterloo, ON N2L 3G1, Canada.
Robin E. Duncan [email protected]
University of Waterloo, Department of Kinesiology, Faculty of Applied Health Sciences, 200 University Avenue W., BMH 1110, Waterloo, ON N2L 3G1, Canada.

Metrics & Citations

Metrics

Other Metrics

Citations

Cite As

Export Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

1. Kidney lipid metabolism: impact on pediatric kidney diseases and modulation by early-life nutrition
2. Lipophagy and Mitophagy in Renal Pathophysiology
3. Renal tubule-specific Atgl deletion links kidney lipid metabolism to glucagon-like peptide 1 and insulin secretion independent of renal inflammation or lipotoxicity
4. Palmitate reduces starvation-induced ER stress by inhibiting ER-phagy in hypothalamic cells
5. Reducing 14-3-3ζ expression influences adipocyte maturity and impairs function
6. Liraglutide attenuates renal tubular ectopic lipid deposition in rats with diabetic nephropathy by inhibiting lipid synthesis and promoting lipolysis
7. Intermittent Fasting: Physiological Implications on Outcomes in Mice and Men
8. The Lipolysome—A Highly Complex and Dynamic Protein Network Orchestrating Cytoplasmic Triacylglycerol Degradation
9. Scaffold Proteins: From Coordinating Signaling Pathways to Metabolic Regulation
10. Lipophagy maintains energy homeostasis in the kidney proximal tubule during prolonged starvation
11. The PNPLA3 variant associated with fatty liver disease (I148M) accumulates on lipid droplets by evading ubiquitylation
12. Kidney triglyceride accumulation in the fasted mouse is dependent upon serum free fatty acids
13. Data on hepatic lipolysis, adipose triglyceride lipase, and hormone-sensitive lipase in fasted and non-fasted C57BL/6J female mice
14. 14-3-3ζ: A numbers game in adipocyte function?

View Options

Login options

Check if you access through your login credentials or your institution to get full access on this article.

Subscribe

Click on the button below to subscribe to Biochemistry and Cell Biology

Purchase options

Purchase this article to get full access to it.

Restore your content access

Enter your email address to restore your content access:

Note: This functionality works only for purchases done as a guest. If you already have an account, log in to access the content to which you are entitled.

View options

PDF

View PDF

Full Text

View Full Text

Figures

Tables

Media

Share Options

Share

Share the article link

Share on social media