Cookies Notification

We use cookies to improve your website experience. To learn about our use of cookies and how you can manage your cookie settings, please see our Cookie Policy.
×

Mitochondrial dysfunction regulates the JAK–STAT pathway via LKB1-mediated AMPK activation ER-stress-independent manner

Publication: Biochemistry and Cell Biology
9 May 2019

Abstract

Mitochondria affect cellular functions alone or in cooperation with other cellular organelles. Recent research has demonstrated the close relationship of mitochondria with the endoplasmic reticulum (ER), both at the physical and the functional level. In an effort to define the combined effect of mitochondrial dysfunction (MD) and ER stress in the proinflammatory activities of macrophages, the human macrophage-like monocytic leukemia cell line THP-1 was treated with mitochondrial electron transport chain (ETC) blockers, and changes in the cellular responses upon stimulation by interferon (IFN)-γ were analyzed. Inducing mitochondrial dysfunction (MD) with ETC blockers resulted in suppression of IFN-induced activation of JAK1 and STAT1/3, as well as the expression of STAT1-regulated genes. In addition, experiments utilizing pharmacological modulators of adenosine 5′-monophosphate (AMP)-activated protein kinase (AMPK) and liver kinase B1 (LKB1)-deficient HeLa cells demonstrated that these suppressive effects are mediated by the LKB1–AMPK pathway. Treatment with pharmacological inhibitors of ER stress sensors failed to affect these processes, thus indicating that involvement of ER stress is not required. These results indicate that MD, induced by blocking the ETC, affects IFN-induced activation of JAK–STAT and associated inflammatory changes in THP-1 cells through the LKB1–AMPK pathway independently of ER stress.

Résumé

Les mitochondries affectent les fonctions cellulaires, seules ou en coopération avec d’autres organites cellulaires. La recherche récente a démontré une étroite relation entre la mitochondrie et le réticulum endoplasmique (RE), tant sur le plan physique que fonctionnel. Dans le but de définir les effets combinés de la dysfonction mitochondriale (DM) et du stress du RE sur les activités proinflammatoires des macrophages, la lignée cellulaire monocytique humaine de type macrophage THP-1 a été traitée avec des bloqueurs de la chaîne de transport d’électrons (CTE), et les changements des réponses cellulaires en réponse à une stimulation par l’interféron (IFN)-γ ont été analysés. L’induction de la dysfonction mitochondriale par les bloqueurs de la CTE donnait lieu à la suppression de l’activation de JAK1 et de STAT1/3 induite par l’IFN, de même que de l’expression des gènes régulés par STAT1. De plus, des expériences réalisées avec des modulateurs pharmacologiques de la protéine kinase activée par l’adénosine 5′-monophosphate (AMP) (AMPK) et des cellules HeLa déficientes en kinase B1 du foie (LKB1) ont démontré que ces effets suppresseurs sont médiés par la voie LKB1–AMPK. Un traitement avec des inhibiteurs pharmacologiques de détecteurs du stress du RE n’affectait pas ces processus, indiquant alors que l’implication du stress du RE n’est pas requise. Ces résultats indiquent que la dysfonction mitochondriale induite par le blocage de la CTE affecte l’activation de JAK–STAT induite par l’IFN et les changements inflammatoires associés chez les cellules THP1 par l’intermédiaire de la voie LKB1–AMPK de manière indépendante du stress du RE. [Traduit par la Rédaction]

Get full access to this article

View all available purchase options and get full access to this article.

References

Aguilera-Aguirre L., Bacsi A., Saavedra-Molina A., Kurosky A., Sur S., and Boldogh I. 2009. Mitochondrial dysfunction increases allergic airway inflammation. J. Immunol. 183(8): 5379–5387.
Ahmad, M., and Kahwaji, C.I. 2018. Biochemistry, electron transport chain. In StatPearls, Treasure Island, Fla.
Banerjee K., Keasey M.P., Razskazovskiy V., Visavadiya N.P., Jia C., and Hagg T. 2017. Reduced FAK-STAT3 signaling contributes to ER stress-induced mitochondrial dysfunction and death in endothelial cells. Cell. Signal. 36: 154–162.
Bang S., Chen Y., Ahima R.S., and Kim S.F. 2014. Convergence of IPMK and LKB1-AMPK signaling pathways on metformin action. Mol. Endocrinol. (Baltimore, Md.), 28(7): 1186–1193.
Berndt J.D., Callaway N.L., and Gonzalez-Lima F. 2001. Effects of chronic sodium azide on brain and muscle cytochrome oxidase activity: a potential model to investigate environmental contributions to neurodegenerative diseases. J. Toxicol. Environ. Health Part A, 63(1): 67–77.
Blagih J., Krawczyk C.M., and Jones R.G. 2012. LKB1 and AMPK: central regulators of lymphocyte metabolism and function. Immunol. Rev. 249(1): 59–71.
Bonilla E., Tanji K., Hirano M., Vu T.H., DiMauro S., and Schon E.A. 1999. Mitochondrial involvement in Alzheimer’s disease. Biochim. Biophys. Acta, 1410(2): 171–182.
Bridges D. and Moorhead G.B. 2005. 14-3-3 proteins: a number of functions for a numbered protein. Sci STKE, 2005(296): re10.
Bronner D.N., Abuaita B.H., Chen X.Y., Fitzgerald K.A., Nunez G., He Y.Q., et al. 2015. Endoplasmic reticulum stress activates the inflammasome via NLRP3-and caspase-2-driven mitochondrial damage. Immunity, 43(3): 451–462.
Buckley B.J. and Whorton A.R. 1997. Tunicamycin increases intracellular calcium levels in bovine aortic endothelial cells. Am. J. Physiol. 273(4 Pt. 1): C1298–C1305.
Busch S., Renaud S.J., Schleussner E., Graham C.H., and Markert U.R. 2009. mTOR mediates human trophoblast invasion through regulation of matrix-remodeling enzymes and is associated with serine phosphorylation of STAT3. Exp. Cell. Res. 315(10): 1724–1733.
Chen Q., Thompson J., Hu Y., Das A., and Lesnefsky E.J. 2017. Metformin attenuates ER stress-induced mitochondrial dysfunction. Transl. Res. 190: 40–50.
Choi Y.H. 2018. ROS-mediated activation of AMPK plays a critical role in sulforaphane-induced apoptosis and mitotic arrest in AGS human gastric cancer cells. Gen. Physiol. Biophys. 37(2): 129–140.
Delgoffe G.M., Kole T.P., Zheng Y., Zarek P.E., Matthews K.L., Xiao B., et al. 2009. The mTOR kinase differentially regulates effector and regulatory T cell lineage commitment. Immunity, 30(6): 832–844.
Fischer T., Thoma B., Scheurich P., and Pfizenmaier K. 1990. Glycosylation of the human interferon-gamma receptor. N-linked carbohydrates contribute to structural heterogeneity and are required for ligand binding. J. Biol. Chem. 265(3): 1710–1717.
Fogarty S. and Hardie D.G. 2009. C-terminal phosphorylation of LKB1 is not required for regulation of AMP-activated protein kinase, BRSK1, BRSK2, or cell cycle arrest. J. Biol. Chem. 284(1): 77–84.
Guo R., Gu J., Zong S., Wu M., and Yang M. 2018. Structure and mechanism of mitochondrial electron transport chain. Biomed. J. 41(1): 9–20.
Han G., Casson R.J., Chidlow G., and Wood J.P. 2014. The mitochondrial complex I inhibitor rotenone induces endoplasmic reticulum stress and activation of GSK-3beta in cultured rat retinal cells. Invest. ophthalmol. Visual Sci. 55(9): 5616–5628.
Hardie D.G., Ross F.A., and Hawley S.A. 2012. AMPK: a nutrient and energy sensor that maintains energy homeostasis. Nat. Rev. Mol. Cell Biol. 13(4): 251–262.
He C., Li H., Viollet B., Zou M.H., and Xie Z. 2015. AMPK suppresses vascular inflammation in vivo by inhibiting signal transducer and activator of transcription-1. Diabetes, 64(12): 4285–4297.
Hemminki A., Markie D., Tomlinson I., Avizienyte E., Roth S., Loukola A., et al. 1998. A serine/threonine kinase gene defective in Peutz–Jeghers syndrome. Nature, 391(6663): 184–187.
Heo J.N., Kim D.Y., Lim S.G., Lee K., Suk K., and Lee W.H. 2019. ER stress differentially affects pro-inflammatory changes induced by mitochondrial dysfunction in the human monocytic leukemia cell line, THP-1. Cell Biol Int. 43(3): 313–322.
Jenne D.E., Reimann H., Nezu J., Friedel W., Loff S., Jeschke R., et al. 1998. Peutz-Jeghers syndrome is caused by mutations in a novel serine threonine kinase. Nat. Genet. 18(1): 38–43.
Jonckheere A.I., Smeitink J.A., and Rodenburg R.J. 2012. Mitochondrial ATP synthase: architecture, function and pathology. J. Inherit. Metab. Dis. 35(2): 211–225.
Kamezaki K., Shimoda K., Numata A., Matsuda T., Nakayama K., and Harada M. 2004. The role of Tyk2, Stat1 and Stat4 in LPS-induced endotoxin signals. Int. Immunol. 16(8): 1173–1179.
Kim J., Yang G., Kim Y., Kim J., and Ha J. 2016. AMPK activators: mechanisms of action and physiological activities. Exp. Mol. Med. 48: e224.
Kim M.Y., Bo H.H., Choi E.O., Kwon D.H., Kim H.J., Ahn K.I., et al. 2018. Induction of apoptosis by Citrus unshiu peel in human breast cancer MCF-7 cells: involvement of ROS-dependent activation of AMPK. Biol. Pharmaceut. Bull. 41(5): 713–721.
Kiu H. and Nicholson S.E. 2012. Biology and significance of the JAK/STAT signalling pathways. Growth Factors, 30(2): 88–106.
Kleefstra T., Wortmann S.B., Rodenburg R.J., Bongers E.M., Hadzsiev K., Noordam C., et al. 2011. Mitochondrial dysfunction and organic aciduria in five patients carrying mutations in the Ras-MAPK pathway. Eur. J. Hum. Genet. 19(2): 138–144.
Lin M.T. and Beal M.F. 2006. Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature, 443(7113): 787–795.
Lizcano J.M., Goransson O., Toth R., Deak M., Morrice N.A., Boudeau J., et al. 2004. LKB1 is a master kinase that activates 13 kinases of the AMPK subfamily, including MARK/PAR-1. EMBO J. 23(4): 833–843.
Londino J.D., Gulick D.L., Lear T.B., Suber T.L., Weathington N.M., Masa L.S., et al. 2017. Post-translational modification of the interferon-gamma receptor alters its stability and signaling. Biochem. J. 474(20): 3543–3557.
Lopez-Crisosto C., Bravo-Sagua R., Rodriguez-Pena M., Mera C., Castro P.F., Quest A.F.G., et al. 2015. ER-to-mitochondria miscommunication and metabolic diseases. Bba-Mol. Basis Dis. 1852(10): 2096–2105.
Mancuso M., Orsucci D., LoGerfo A., Calsolaro V., and Siciliano G. 2010. Clinical features and pathogenesis of Alzheimer’s disease: involvement of mitochondria and mitochondrial DNA. Adv. Exp. Med. Biol. 685: 34–44.
Martinvalet D. 2018. The role of the mitochondria and the endoplasmic reticulum contact sites in the development of the immune responses. Cell Death Dis. 9(3): 336.
Neumann D. 2018. Is TAK1 a direct upstream kinase of AMPK? Int. J. Mol. Sci. 19(8): 2412.
Nguyen T.M., Combarnous Y., Praud C., Duittoz A., and Blesbois E. 2016. Ca2+/calmodulin-dependent protein kinase kinases (CaMKKs) effects on AMP-activated protein kinase (AMPK) regulation of chicken sperm functions. PloS ONE, 11(1): e0147559.
Oakhill J.S., Steel R., Chen Z.P., Scott J.W., Ling N., Tam S., and Kemp B.E. 2011. AMPK is a direct adenylate charge-regulated protein kinase. Science (New York), 332(6036): 1433–1435.
Ohmori Y. and Hamilton T.A. 2001. Requirement for STAT1 in LPS-induced gene expression in macrophages. J. Leukocyte Biol. 69(4): 598–604.
Okazawa H., Ikawa M., Tsujikawa T., Kiyono Y., and Yoneda M. 2014. Brain imaging for oxidative stress and mitochondrial dysfunction in neurodegenerative diseases. Q. J. Nucl. Med. Mol. Imaging, 58(4): 387–397.
O’Neill H.M. 2013. AMPK and exercise: glucose uptake and insulin sensitivity. Diabetes Metab. J. 37(1): 1–21.
Qing Y. and Stark G.R. 2004. Alternative activation of STAT1 and STAT3 in response to interferon-gamma. J. Biol. Chem. 279(40): 41679–41685.
Rutherford C., Speirs C., Williams J.J., Ewart M.A., Mancini S.J., Hawley S.A., et al. 2016. Phosphorylation of Janus kinase 1 (JAK1) by AMP-activated protein kinase (AMPK) links energy sensing to anti-inflammatory signaling. Sci. Signal. 9(453): ra109.
Sakamoto K., Goransson O., Hardie D.G., and Alessi D.R. 2004. Activity of LKB1 and AMPK-related kinases in skeletal muscle: effects of contraction, phenformin, and AICAR. Am. J. Physiol. Endocrinol. Metab. 287(2): E310–E317.
Schapira A.H. 1999. Mitochondrial involvement in Parkinson’s disease, Huntington’s disease, hereditary spastic paraplegia and Friedreich’s ataxia. Biochim. Biophys. Acta, 1410(2): 159–170.
Schindler C., Levy D.E., and Decker T. 2007. JAK-STAT signaling: from interferons to cytokines. J. Biol. Chem. 282(28): 20059–20063.
Seres M., Cholujova D., Bubencikova T., Breier A., and Sulova Z. 2011. Tunicamycin depresses P-glycoprotein glycosylation without an effect on its membrane localization and drug efflux activity in L1210 cells. Int. J. Mol. Sci. 12(11): 7772–7784.
Shaw R.J., Kosmatka M., Bardeesy N., Hurley R.L., Witters L.A., DePinho R.A., and Cantley L.C. 2004. The tumor suppressor LKB1 kinase directly activates AMP-activated kinase and regulates apoptosis in response to energy stress. Proc. Natl. Acad. Sci. U.S.A. 101(10): 3329–3335.
Song Q., Gou W.L., and Zhang R. 2016. FAM3A attenuates ER stress-induced mitochondrial dysfunction and apoptosis via CHOP-Wnt pathway. Neurochem. Int. 94: 82–89.
Speirs C., Williams J.J.L., Riches K., Salt I.P., and Palmer T.M. 2018. Linking energy sensing to suppression of JAK-STAT signalling: A potential route for repurposing AMPK activators? Pharmacol. Res. 128: 88–100.
Surani M.A. 1979. Glycoprotein synthesis and inhibition of glycosylation by tunicamycin in preimplantation mouse embryos: compaction and trophoblast adhesion. Cell, 18(1): 217–227.
Symersky J., Osowski D., Walters D.E., and Mueller D.M. 2012. Oligomycin frames a common drug-binding site in the ATP synthase. Proc. Natl. Acad. Sci. U.S.A. 109(35): 13961–13965.
Wang Q., Cai H., Hu Z., Wu Y., Guo X., Li J., et al. 2019. Loureirin B promotes axon regeneration by inhibiting ER stress-induced mitochondrial dysfunction and regulating the Akt/GSK-3beta pathway after spinal cord injury. J. Neurotrauma, 36(12): 1949–1964.
Woods A., Johnstone S.R., Dickerson K., Leiper F.C., Fryer L.G., Neumann D., et al. 2003. LKB1 is the upstream kinase in the AMP-activated protein kinase cascade. Curr. Biol. 13(22): 2004–2008.
Xu Q.H., Song B.J., Liu D., Chen Y.H., Zhou Y., Liu W.B., et al. 2018. The MKK7 inhibitor peptide GADD45beta-I attenuates ER stress-induced mitochondrial dysfunction in HT22 cells: Involvement of JNK-Wnt pathway. Brain Res. 1691: 1–8.
Zhang C.S., Li M., Zong Y., and Lin S.C. 2018. Determining AMPK activation via the lysosomal v-ATPase-Ragulator-AXIN/LKB1 axis. Methods Mol. Biol. 1732: 393–411.
Zhang Y.L., Guo H., Zhang C.S., Lin S.Y., Yin Z., Peng Y., et al. 2013. AMP as a low-energy charge signal autonomously initiates assembly of AXIN-AMPK-LKB1 complex for AMPK activation. Cell. Metab. 18(4): 546–555.

Supplementary Material

Supplementary data (bcb-2019-0088suppla.docx)

Information & Authors

Information

Published In

cover image Biochemistry and Cell Biology
Biochemistry and Cell Biology
Volume 98Number 2April 2020
Pages: 137 - 144

History

Received: 18 March 2019
Accepted: 25 April 2019
Accepted manuscript online: 9 May 2019
Version of record online: 9 May 2019

Permissions

Request permissions for this article.

Key Words

  1. macrophage
  2. inflammation
  3. mitochondrial dysfunction
  4. ER stress
  5. JAK–STAT
  6. AMPK

Mots-clés

  1. macrophage
  2. inflammation
  3. dysfonction mitochondriale
  4. stress du RE
  5. JAK–STAT
  6. AMPK

Authors

Affiliations

Dong-Yeon Kim
School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea.
Su-Geun Lim
School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea.
Kyoungho Suk
Department of Pharmacology, Brain Science & Engineering Institute, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University School of Medicine, Daegu 41944, Republic of Korea.
School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea.

Notes

Copyright remains with the author(s) or their institution(s). Permission for reuse (free in most cases) can be obtained from RightsLink.

Metrics & Citations

Metrics

Other Metrics

Citations

Cite As

Export Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

1. mtSTAT3 suppresses rheumatoid arthritis by regulating Th17 and synovial fibroblast inflammatory cell death with IL-17-mediated autophagy dysfunction
2. AMPK activation mitigates inflammatory pain by modulating STAT3 phosphorylation in inflamed tissue macrophages of adult male mice
3. Caspase-4 promotes metastasis and interferon-γ-induced pyroptosis in lung adenocarcinoma
4. Proteomic Analysis Reveals Oxidative Phosphorylation and JAK ‐ STAT Pathways Mediated Pathogenesis of Pemphigus Vulgaris
5. Caveolin and NOS in the Development of Muscular Dystrophy
6. Immunological Signatures for Early Detection of Human Head and Neck Squamous Cell Carcinoma through RNA Transcriptome Analysis of Blood Platelets
7. Effect of a high dose atorvastatin as added-on therapy on symptoms and serum AMPK/NLRP3 inflammasome and IL-6/STAT3 axes in patients with major depressive disorder: randomized controlled clinical study
8. NF-κB and JAK/STAT Signaling Pathways as Crucial Regulators of Neuroinflammation and Astrocyte Modulation in Spinal Cord Injury
9. Advancing Biomarker Discovery and Therapeutic Targets in Duchenne Muscular Dystrophy: A Comprehensive Review
10. GADD45A regulates subcutaneous fat deposition and lipid metabolism by interacting with Stat1
11. GFAP serves as a structural element of tunneling nanotubes between glioblastoma cells and could play a role in the intercellular transfer of mitochondria
12. Caspase-4 promotes both metastasis and interferon-γ-induced cell death in non-small cell lung cancer
13. Linear ubiquitination of LKB1 activates AMPK pathway to inhibit NLRP3 inflammasome response and reduce chondrocyte pyroptosis in osteoarthritis
14. Targeting protein kinases in cancer stem cells
15. The role of MicroRNA networks in tissue-specific direct and indirect effects of metformin and its application
16. Mitochondria–actin cytoskeleton crosstalk in cell migration
17. A systematic review on nephron protective AYUSH drugs as constituents of NEERI-KFT (A traditional Indian polyherbal formulation) for the management of chronic kidney disease
18. Autophagy Induced by Proteasomal DUB Inhibitor NiPT Restricts NiPT-Mediated Cancer Cell Death

View Options

Login options

Check if you access through your login credentials or your institution to get full access on this article.

Subscribe

Click on the button below to subscribe to Biochemistry and Cell Biology

Purchase options

Purchase this article to get full access to it.

Restore your content access

Enter your email address to restore your content access:

Note: This functionality works only for purchases done as a guest. If you already have an account, log in to access the content to which you are entitled.

View options

PDF

View PDF

Full Text

View Full Text

Figures

Tables

Media

Share Options

Share

Share the article link

Share on social media