Cookies Notification

We use cookies to improve your website experience. To learn about our use of cookies and how you can manage your cookie settings, please see our Cookie Policy.

Effect of seed size on germination in three species from arid Arabian deserts

Publication: Botany
8 October 2020


In many species, seeds with different sizes show diverse responses in their requirements for temperature and light for optimal germination. In this study, the effect of seed size (i.e., small and large) on germination was tested in seeds of Brassica tournefortii Gouan, Lotus garcinii DC., and Salvadora persica L. from arid Arabian Desert habitats. The mean seed size of all three study species differs significantly between small and large-sized seeds. Differences were observed in seed germination between large and small seeds of B. tournefortii and L. garcinii. We found that the large seeds of B. tournefortii and L. garcinii showed a higher germination percentage at all tested temperatures than that displayed by the small seeds. However, both small and large seeds of S. persica germinated equally (100%) well under all tested incubation conditions. Our results show significant differences in germination percentage between the small and large seeds of B. tournefortii at 25/35 °C under a 12 h light regime. However, seeds of L. garcinii showed a significant difference in germination percentage at low temperatures (15/25 °C) under a 12 h light regime.


Chez de nombreuses espèces, les graines de différentes tailles présentent des exigences de température et de lumière variées pour germer de manière optimale. Dans cette étude, l’effet de la taille des graines (petites et grandes) sur la germination a été testé sur des graines de Brassica tournefortii Gouan, Lotus garcinii DC. et Salvadora persica L. provenant d’habitats arides du désert d’Arabie. La taille moyenne des graines de petite taille et de grande taille est significativement différente chez trois espèces étudiées. Des différences ont été observées dans la germination des graines de grande et de petite taille chez B. tournefortii et L. garcinii. Les auteurs ont constaté que les graines de grande taille de B. tournefortii et de L. garcinii présentaient une germination plus élevée à toutes les températures testées comparativement à celle des graines de petite taille. Cependant, les graines de petite et de grande taille de S. persica germaient bien (100 %) dans toutes les conditions d’incubation. Ces résultats montrent des différences significatives dans le pourcentage de germination entre les graines de petite et de grande taille chez B. tournefortii à 25/35 °C sous un régime de lumière de 12 h. Toutefois, le pourcentage de germination de L. garcinii sous un régime de lumière de 12 h à basse température (15/25 °C) est significativement différent.

Get full access to this article

View all available purchase options and get full access to this article.


Baskin, C.C., and Baskin, J.M. 1998. Seeds: ecology, biogeography, and, evolution of dormancy and germination. Elsevier/Academic Press.
Baskin, C.C., and Baskin, J.M. 2014. Seeds: ecology, biogeography, and evolution of dormancy and germination. Elsevier Science.
Bhatt A., Phartyal S.S., and Nicholas A. 2017. Ecological role of distinct fruit-wing perianth color in synchronization of seed germination in Haloxylon salicornicum. Plant Spec. Biol. 32(2): 121–133.
Bond W.J., Honig M., and Maze K.E. 1999. Seed size and seedling emergence: an allometric relationship and some ecological implications. Oecologia, 120(1): 132–136.
Carter C.T. and Ungar I.A. 2003. Germination response of dimorphic seeds of two halophyte species to environmentally controlled and natural conditions. Can. J. Bot. 81(9): 918–926.
Cordazzo C.V. 2002. Effect of seed mass on germination and growth in three dominant species in southern Brazilian coastal dunes. Braz. J. Biol. 62(3): 427–435.
Fenner M. 1991. The effects of the parent environment on seed germinability. Seed Sci. Res. 1(2): 75–84.
Fenner, M., and Thompson, K. 2005. The ecology of seeds. Cam-bridge University Press.
Gairola S., Shabana H.A., Mahmoud T., and Santo A. 2018. Effects of seed colour heterogeneity on germination behaviour of the desert plant Lotononis platycarpa (Fabaceae). Nord. J. Bot. 36(3): njb-01617.
Giles B.E. 1990. The effects of variation in seed size on growth and reproduction in the wild barley Hordeum vulgare ssp. spontaneum. J. Hered. 64(2): 239–250.
Greipsson S. and Davy A.J. 1995. Seed mass and germination behaviour in populations of the dune-building grass Leymus arenarius. Ann. Bot. 76(5): 493–501.
Grime J.P., Mason G., Curtis A.V., Rodman J., and Band S.R. 1981. A comparative study of germination characteristics in a local flora. J. Ecol. 69(3): 1017–1059.
Gutterman, Y. 2012. Seed germination in desert plants. Springer-Verlag.
Hadi S.M.S., Ahmed M.Z., Hameed A., Khan M.A., and Gul B. 2018. Seed germination and seedling growth responses of toothbrush tree (Salvadora persica Linn.) to different interacting abiotic stresses. Flora, 243: 45–52.
Harper, J.L. 1977. The Population Biology of Plants. Academic Press.
He Y., Wang M., Wen S., Zhang Y., Ma T., and Du G. 2007. Seed size effect on seedling growth under different light conditions in the clonal herb Ligularia virgaurea in Qinghai-Tibet Plateau. Acta Ecol. Sin. 27(8): 3091–3108.
Herrera L. and Laterra P. 2009. Do seed and microsite limitations interact with species seed size in determining flooding pampa grasslands colonization. Plant Ecol. 201(2): 457–469.
Houssard C. and Escarré J. 1991. The effects of seed weight on growth and competitive ability of Rumex acetosella from two successional old-fields. Oecologia, 86(2): 236–242.
Howell N. 1981. The effect of seed size and relative emergence time on fitness in a natural population of Impatiens capensis Meerb. (Balsaminaceae). Am. Midl. Nat. 105(2): 312–320.
Huang Z., Liu S., Bradford K.J., Huxman T.E., and Venable D.L. 2016. The contribution of germination functional traits to population dynamics of a desert plant community. Ecology, 97(1): 250–261.
Kidson R. and Westoby M. 2000. Seed mass and seedling dimensions in relation to seedling establishment. Oecologia, 125(1): 11–17.
Leishman M.R. and Westoby M. 1994. The role of seed size in seedling establishment in dry soil conditions – experimental evidence from semi-arid species. J. Ecol. 82(2): 249–258.
Leishman, M.R., Wright, I.J., Moles, A.T., Westoby, M., and Fenner, M. 2000. The evolutionary ecology of seed size. In Seeds: the ecology of regeneration in plant communities. 2 edition. Edited by M. Fenner. CAB International. pp. 31–57.
Mahajan G., Mutti N.K., Jha P., Walsh M., and Chauhan B.S. 2018. Evaluation of dormancy breaking methods for enhanced germination in four biotypes of Brassica tournefortii. Sci. Rep. 8(1): 1–8.
Mandák B. and Pyšek P. 2005. How does seed heteromorphism influence the life history stages of Atriplex sagittata (Chenopodiaceae)? Flora, 200(6): 516–526.
Matilla A., Gallardo M., and Puga-Hermida M.I. 2005. Structural, physiological and molecular aspects of heterogeneity in seeds: a review. Seed Sci. Res. 15(2): 63–76.
Maun M.A. 1998. Adaptations of plants to burial in coastal sand dunes. Can. J. Bot. 76(5): 713–738.
Meyer S.E., Kitchen S.G., and Carlson S.L. 1995. Seed germination timing patterns in intermountain Penstemon (Scrophulariaceae). Am. J. Bot. 82(3): 377–389.
Milberg P., Andersson L., and Thompson K. 2000. Large-seeded species are less dependent on light for germination than small-seeded ones. Seed Sci. Res. 10(1): 99–104.
Moles A.T. and Westoby M. 2006. Seed size and plant strategy across the whole life cycle. Oikos. 113(1): 91–105.
Nisar F., Gul B., Khan M.A., and Hameed A. 2019. Germination and recovery responses of heteromorphic seeds of two co-occurring Arthrocnemum species to salinity, temperature and light. S. Afr. J. Bot. 121: 143–151.
Phartyal S.S., Rosbakh S., Ritz C., and Poschlod P. 2020. Ready for change: Seed traits contribute to the high adaptability of mudflat species to their unpredictable habitat. J. Veg. Sci. 31(2): 331–342.
Royal Botanic Gardens Kew 2020. Seed Information Database (SID). Version 7.1. Available from [Accessed June 2020].
Santo A., Mattana E., Grillo O., and Bacchetta G. 2015. Morphocolorimetric analysis and seed germination of Brassica insularis Moris (Brassicaceae) populations. Plant Biol. (Stuttg). 17(2): 335–343.
Siddiqui Z.S. and Khan M.A. 2011. The role of enzyme amylase in two germinating seed morphs of Halopyrum mucronatum (L.) Stapf. in saline and non-saline environment. Acta Physiol. Plant. 33(4): 1185–1197.
Simons A.M. and Johnston M.O. 2000. Variation in seed traits of Lobelia inflata (Campanulaceae): sources and fitness consequences. Am. J. Bot. 87(1): 124–132.
Skogen K.A., Senack L., and Holsinger K.E. 2010. Dormancy, small seed size and low germination rates contribute to low recruitment in Desmodium cuspidatum (Fabaceae). J. Torrey Bot. Soc. 137(4): 355–365.
Souza M.L. and Fagundes M. 2014. Seed size as key factor in germination and seedling development of Copaifera langsdorffii (Fabaceae). Am. J. Plant Sci. 5(17): 2566–2573.
Swanborough P. and Westoby M. 1996. Seedling relative growth rate and its components in relation to seed size: phylogenetically independent contrasts. Funct. Ecol. 10(2): 176–184.
Takeno K. and Yamaguchi H. 1991. Diversity in seed germination behavior in relation to heterocarpy in Salsola komarovii Iljin. Bot Mag. 104(3): 207–215.
Venable D.L. 1985. The evolutionary ecology of seed heteromorphism. Am. Nat. 126(5): 577–595.
Wei Y., Dong M., Huang Z.Y., and Tan D.Y. 2008. Factors influencing seed germination of Salsola affinis (Chenopodiaceae), a dominant annual halophyte inhabiting the deserts of Xinjiang, China. Flora, 203(2): 134–140.
Weis I.M. 1982. The effects of propagule size on germination and seedling growth in Mirabilis hirsuta. Can. J. Bot. 60(10): 1868–1874.
Yanful M. and Maun M.A. 1996. Effects of burial of seeds and seedlings from different seed sizes on the emergence and growth of Strophostyles helvola. Can. J. Bot. 74(8): 1322–1330.
Yang F., Baskin J.M., Baskin C.C., Yang X., Cao D., and Huang Z. 2015. Effects of germination time on seed morph ratio in a seed-dimorphic species and possible ecological significance. Ann. Bot. 115(1): 137–145.
Yao S., Lan H., and Zhang F. 2010. Variation of seed heteromorphism in Chenopodium album and the effect of salinity stress on the descendants. Ann. Bot. 105(6): 1015–1025.
Zhang J.H. 1993. Seed dimorphism in relation to germination and growth of Cakile edentula. Can. J. Bot. 71(9): 1231–1235.
Zia S. and Khan M.A. 2004. Effect of light, salinity, and temperature on seed germination of Limonium stocksii. Can. J. Bot. 82(2): 151–157.

Information & Authors


Published In

cover image Botany
Volume 99Number 2February 2021
Pages: 69 - 74


Received: 22 July 2020
Accepted: 25 September 2020
Accepted manuscript online: 8 October 2020
Version of record online: 8 October 2020


Request permissions for this article.

Key Words

  1. arid desert
  2. Brassica tournefortii
  3. germination
  4. Lotus garcinii
  5. Salvadora persica
  6. seed size
  7. temperature


  1. désert aride
  2. Brassica tournefortii
  3. germination
  4. Lotus garcinii
  5. Salvadora persica
  6. taille des graines
  7. température



Sanjay Gairola [email protected]
Sharjah Seed Bank and Herbarium, Sharjah Research Academy, P.O. Box 60999, Sharjah, UAE.
Tamer Mahmoud*
Sharjah Seed Bank and Herbarium, Sharjah Research Academy, P.O. Box 60999, Sharjah, UAE.
Hatem A. Shabana*
Sharjah Seed Bank and Herbarium, Sharjah Research Academy, P.O. Box 60999, Sharjah, UAE.
Asma AlKetbi
Sharjah Seed Bank and Herbarium, Sharjah Research Academy, P.O. Box 60999, Sharjah, UAE.
Shyam S. Phartyal
Nalanda University, School of Ecology and Environment Studies, Rajgir, 803116, India.


Present address: Nature Conservation Sector, Egyptian Environmental Affairs Agency, Cairo 11728, Egypt.
Copyright remains with the author(s) or their institution(s). Permission for reuse (free in most cases) can be obtained from

Metrics & Citations


Other Metrics


Cite As

Export Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

There are no citations for this item

View Options

Get Access

Login options

Check if you access through your login credentials or your institution to get full access on this article.


Click on the button below to subscribe to Botany

Purchase options

Purchase this article to get full access to it.

Restore your content access

Enter your email address to restore your content access:

Note: This functionality works only for purchases done as a guest. If you already have an account, log in to access the content to which you are entitled.

View options


View PDF

Full Text

View Full Text





Share Options


Share the article link

Share on social media