Cookies Notification

We use cookies to improve your website experience. To learn about our use of cookies and how you can manage your cookie settings, please see our Cookie Policy.

Interactions of laulimalide, peloruside, and their derivatives with the isoforms of β-tubulin

Publication: Canadian Journal of Chemistry
2 April 2013


The investigational anticancer agents laulimalide and peloruside are known to exert an antimitotic effect on cells by binding to β-tubulin. The binding affinities of derivatives of laulimalide and peloruside to all known isoforms of human β-tubulin were calculated using molecular mechanical, molecular dynamical, and quantum mechanical methods. Several of the derivatives are predicted to have improved β-tubulin binding affinities compared to the parent structures. These results can form the starting point for developing laulimalide or peloruside derivatives with greater specificity for the particular β-tubulin isoforms, which are overexpressed in certain tumours.

Graphical Abstract


Le laulimalide et le péloruside sont des agents anticancéreux de recherches qui sont connus pour exercer un effet antimitotique sur les cellules par fixation à la β-tubuline. Faisant appel à des méthodes de mécanique moléculaire, de dynamique moléculaire et de mécanique quantique, on a calculé d'une façon théorique les affinités de fixation des dérivés du laulimalide et du péloruside avec toutes les formes connues de la β-tubuline humaine. Il a été possible de prédire que plusieurs des dérivés ont des affinités améliorées de fixation de la β-tubuline lorsque comparées à ces des structures parentes. Ces résultats peuvent servir de point de départ pour développer des dérivés du laulimalide ou du péloruside qui auraient des spécificités supérieures par des isoformes particulières de β-tubulines qui seraient surexprimées dans certaines tumeurs. [Traduit par la Rédaction]

Get full access to this article

View all available purchase options and get full access to this article.


Canadian Cancer Society's Steering Committee on Cancer Statistics. Canadian Cancer Statistics 2011; Canadian Cancer Society, Toronto, ON, 2011.
American Cancer Society. Cancer Facts & Figures 2011; American Cancer Society, Atlanta, GA, 2011.
Canadian Cancer Society's Steering Committee on Cancer Statistics. Canadian Cancer Statistics 2010; Canadian Cancer Society, Toronto, ON, 2010.
American Cancer Society. Cancer Facts & Figures 2010; American Cancer Society, Atlanta, GA, 2010.
Goodman, J.; Walsh, V. The story of Taxol; Cambridge University Press, Cambridge, UK, 2001.
Quinoa E., Kakou Y., and Crews P. Fijianolides, polyketide heterocycles from a marine sponge. J. Org. Chem. 1988, 53, 3642–3644.
Gaitanos T. N., Buey R. M., Díaz J. F., Northcote P. T., Teesdale-Spittle P., Andreu J. M., and Miller J. H. Peloruside A does not bind to the taxoid site on beta-tubulin and retains its activity in multidrug-resistant cell lines. Cancer Res. 2004, 64, 5063–5067.
Wilmes A., O'Sullivan D., Chan A., Chandrahasen C., Paterson I., Northcote P. T., La Flamme A. C., and Miller J. H. Synergistic interactions between peloruside A and other microtubule-stabilizing and destabilizing agents in cultured human ovarian carcinoma cells and murine T cells. Cancer Chemother. Pharmacol. 2011, 68, 117–126.
Miller J. H., Singh A. J., and Northcote P. T. Microtubule-stabilizing drugs from marine sponges: focus on peloruside A and zampanolide. Mar. Drugs 2010, 8, 1059–1079.
Mooberry S. L., Tien G., Hernandez A. H., Plubrukarn A., and Davidson B. S. Laulimalide and isolaulimalide, new paclitaxel-like microtubule-stabilizing agents. Cancer Res. 1999, 59, 653–660.
Huzil J. T., Chik J. K., Slysz G. W., Freedman H., Tuszynski J. A., Taylor R. E., Sackett D. L., and Schriemer D. C. A unique mode of microtubule stabilization induced by peloruside {A}. J. Mol. Biol. 2008, 378, 1016–1030.
Bennett M. J., Barakat K., Huzil J. T., Tuszynski J. A., and Schriemer D. C. Discovery and characterization of the laulimalide-microtubule binding mode by mass shift perturbation mapping. Chem. Biol. 2010, 17, 725–734.
Carlomagno, T. Tubulin-Binding Agents; Springer, New York, 2009.
Leandro-García L. J., Leskelä S., Landa I., Montero-Conde C., López-Jimenez E., Letón R., Cascón A., Robledo M., and Rodríguez-Antona C. Tumoral and tissue-specific expression of the major human beta-tubulin isotypes. Cytoskeleton 2010, 67, 214–223.
Huzil J. T., Chen K., Kurgan L., and Tuszynski J. A. The roles of beta-tubulin mutations and isotype expression in acquired drug resistance. Cancer Inform. 2007, 3, 159–181
Mooberry S. L., Randall-Hlubek D. A., Leal R. M., Hegde S. G., Hubbard R. D., Zhang L., and Wender P. A. Microtubule-stabilizing agents based on designed laulimalide analogues. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 8803–8808.
Mooberry S. L., Hilinski M. K., Clark E. A., and Wender P. A. Function-oriented synthesis: biological evaluation of laulimalide analogues derived from a last step cross metathesis diversification strategy. Mol. Pharm. 2008, 5, 829–838.
Johnson T. A., Tenney K., Cichewicz R. H., Morinaka B. I., White K. N., Amagata T., Subramanian B., Media J., Mooberry S. L., Valeriote F. A., and Crews P. Sponge-derived fijianolide polyketide class: further evaluation of their structural and cytotoxicity properties. J. Med. Chem. 2007, 50, 3795–3803.
Gallagher B. M. Microtubule-stabilizing natural products as promising cancer therapeutics. Curr. Med. Chem. 2007, 14, 2959–2967.
West L. M., Northcote P. T., and Battershill C. N. Peloruside A: a potent cytotoxic macrolide isolated from the new zealand marine sponge Mycale sp. J. Org. Chem. 2000, 65, 445–449.
Hood K. A., West L. M., Rouwé B., Northcote P. T., Berridge M. V., Wakefield S. J., and Miller J. H. Peloruside A, a novel antimitotic agent with paclitaxel-like microtubule- stabilizing activity. Cancer Res. 2002, 62, 3356–3360.
Jiménez-Barbero J., Canales A., Northcote P. T., Buey R. M., Andrew J. M., and Díaz J. F. NMR determination of the bioactive conformation of peloruside A bound to microtubules. J. Am. Chem. Soc. 2006, 128, 8757–8765.
Crume K. P., Miller J. H., and La Flamme A. C. Peloruside A, an antimitotic agent, specifically decreases tumor necrosis factor-alpha production by lipopolysaccharide-stimulated murine macrophages. Exp. Biol. Med. 2007, 232, 607–613.
Huzil T. J., Luduena R. F., and Tuszynski J. A. Comparative modelling of human β tubulin isotypes and implications for drug binding. Nanotechnology 2006, 17, S90–S100.
Sánchez R. and Sali A. Comparative protein structure modeling. Introduction and practical examples with modeller. Methods Mol. Biol. 2000, 143, 97–129.
Löwe J., Li H., Downing K. H., and Nogales E. Refined structure of alpha beta-tubulin at 3.5 Å resolution. J. Mol. Biol. 2001, 313, 1045–1057.
Percy A. J., Slysz G. W., and Schriemer D. C. Surrogate H/D detection strategy for protein conformational analysis using MS/MS data. Anal. Chem. 2009, 81, 7900–7097.
Humphrey W., Dalke A., and Schulten K. VMD - visual molecular dynamics. J. Mol. Graph. 1996, 14, 33–38.
Nogales E., Wolf S. G., and Downing K. H. Structure of the alpha beta tubulin dimer by electron crystallography. Nature 1998, 391, 199–203.
Case, D. A.; Darden, T. A.; Cheatham, T. E. III; Simmerling, C. L.; Wang, J.; Duke, R. E.; Luo, R.; Merz, K. M.; Pearlman, D. A.; Crowley, M.; Walker, R. C.; Zhang, W.; Wang, B.; Hayik, S.; Roitberg, A.; Seabra, G.; Wong, K. F.; Paesani, F.; Wu, X.; Brozell, S.; Tsui, V.; Gohlke, H.; Yang, L.; Tan, C.; Mongan, J.; Hornak, V.; Cui, G.; Beroza, P.; Mathews, D. H.; Schafmeister, C.; Ross, W. S.; Kollman, P. A. Amber 9; University of California, San Francisco, 2006.
Hornak V., Abel R., Okur A., Strockbine B., Roitberg A., and Simmerling C. Comparison of multiple Amber force fields and development of improved protein backbone parameters. Proteins 2006, 65, 712–725.
Cezard, C.; Vanquelef, E.; Pecher, J.; Sonnet, P.; Cieplak, P.; Derat, E.; Dupradeau, F. ESP charge derivation and force field topology database generation for complex bio-molecular systems and analogs; 236th ACS National Meeting, Philadelphia, PA, 2008.
Schaftenaar G. and Noordik J. H. Molden: a pre- and post-processing program for molecular and electronic structures. J. Comput. Aided Mol. Des. 2000, 14, 123–134.
Dewar M. J. S., Zoebisch E. G., Healy E. F., and Stewart J. J. P. Development and use of quantum mechanical molecular models. 76. AM1: a new general purpose quantum mechanical molecular model. J. Am. Chem. Soc. 1985, 107, 3902–3909.
Schmidt M. W., Baldridge K. K., Boatz J. A., Elbert S. T., Gordon M. S., Jensen J. H., Koseki S., Matsunaga N., Nguyen K. A., Su S., Windus T. L., Dupuis M., and Montgomery J. A. General atomic and molecular electronic structure system. J. Comput. Chem. 1993, 14, 1347–1363.
Wang J., Wolf R. M., Caldwell J. W., Kollman P. A., and Case D. A. Development and testing of a general Amber force field. J. Comput. Chem. 2004, 25, 1157–1174.
Bode B. M. and Gordon M. S. MacMolPlt: a graphical user interface for {GAMESS}. J. Mol. Graph. Model. 1998, 16, 133–138.
Sève P. and Dumontet P. Is class III β-tubulin a predictive factor in patients receiving tubulin-binding agents? Lancet Oncol. 2008, 9, 168–175.
Banerjee A. Increased levels of tyrosinated alpha-, beta(III)-, and beta(IV)-tubulin isotypes in paclitaxel-resistant {MCF-7} breast cancer cells. Biochem. Biophys. Res. Commun. 2002, 293, 598–601.
Banerjee A. and Luduena R. F. Kinetics of colchicine binding to purified beta-tubulin isotypes from bovine brain. J. Biol. Chem. 1992, 267, 13335–13339.
Portions of these results were generated by ADMET Predictor\texttrademark 5.5 software provided by Simulations Plus, Inc., Lancaster, California, USA.
Moriguchi I., Hirono S., Liu Q., Nakagome I., and Matsushita Y. Simple method of calculating octanol/water partition coefficient. Chem. Pharm. Bull. 1992, 40, 127–130.
Lipinski C. A., Lombardo F., Dominy B. W., and Feeney P. J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Del. Rev. 2001, 46, 3–26.

Supplementary Material

File (cjc-2012-0360suppla.docx)
File (cjc-2012-0360supplb.eps)
File (cjc-2012-0360supplc.eps)
File (cjc-2012-0360suppld.eps)
File (cjc-2012-0360supple.eps)
File (cjc-2012-0360supplf.eps)
File (cjc-2012-0360supplg.eps)
File (cjc-2012-0360supplh.eps)
File (cjc-2012-0360suppli.eps)
File (cjc-2012-0360supplj.eps)

Information & Authors


Published In

cover image Canadian Journal of Chemistry
Canadian Journal of Chemistry
Volume 91Number 7July 2013
Pages: 511 - 517


Received: 12 September 2012
Accepted: 19 October 2012
Version of record online: 2 April 2013


Request permissions for this article.

Key Words

  1. peloruside
  2. laulimalide
  3. molecular mechanics
  4. molecular dynamics
  5. tubulin
  6. cancer


  1. péloruside
  2. laulimalide
  3. mécanique moléculaire
  4. dynamique moléculaire
  5. tubuline
  6. cancer



Melissa M. Gajewski
Department of Chemistry, University of Alberta, Edmonton, AB, Canada.
Division of Experimental Oncology, Department of Oncology, University of Alberta, Edmonton, AB, Canada.
Jack A. Tuszynski
Division of Experimental Oncology, Department of Oncology, University of Alberta, Edmonton, AB, Canada.
Department of Physics, University of Alberta, Edmonton, AB, Canada.
Khaled Barakat*
Division of Experimental Oncology, Department of Oncology, University of Alberta, Edmonton, AB, Canada.
J. Torin Huzil
School of Pharmacy and Department of Applied Mathematics, University of Waterloo, Waterloo, ON, Canada.
Mariusz Klobukowski
Department of Chemistry, University of Alberta, Edmonton, AB, Canada.


On leave from the Department of Engineering Mathematics and Physics, Fayoum University, Fayoum, Egypt.
This article is part of a Special Issue dedicated to Professor Dennis Salahub in recognition of his contributions to theoretical and computational chemistry.

Metrics & Citations


Other Metrics


Cite As

Export Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

1. The Impact of Natural Compounds on S-Shaped Aβ42 Fibril: From Molecular Docking to Biophysical Characterization
2. In silico Investigations of the Mode of Action of Novel Colchicine Derivatives Targeting β-Tubulin Isotypes: A Search for a Selective and Specific β-III Tubulin Ligand
3. Revealing the atomistic details behind the binding of B7–1 to CD28 and CTLA-4: A comprehensive protein-protein modelling study
4. Molecular Dynamics Simulation and Prediction of Druggable Binding Sites
5. Structure‐based approaches for the design of benzimidazole‐2‐carbamate derivatives as tubulin polymerization inhibitors
6. Dictyoceratidan poisons: Defined mark on microtubule-tubulin dynamics
7. Entropy in bimolecular simulations: A comprehensive review of atomic fluctuations-based methods
8. Human PD-1 binds differently to its human ligands: A comprehensive modeling study
9. Synthetic, semisynthetic and natural analogues of peloruside A
10. ChemInform Abstract: Interactions of Laulimalide, Peloruside, and Their Derivatives with the Isoforms of β‐Tubulin

View Options

Get Access

Login options

Check if you access through your login credentials or your institution to get full access on this article.


Click on the button below to subscribe to Canadian Journal of Chemistry

Purchase options

Purchase this article to get full access to it.

Restore your content access

Enter your email address to restore your content access:

Note: This functionality works only for purchases done as a guest. If you already have an account, log in to access the content to which you are entitled.

View options


View PDF

Full Text

View Full Text





Share Options


Share the article link

Share on social media