Cookies Notification

We use cookies to improve your website experience. To learn about our use of cookies and how you can manage your cookie settings, please see our Cookie Policy.
×

Conversion of Symphytum officinale and Panicum virgatum plant extracts to 5-hydroxymethylfurfural catalysed by metal chlorides in ionic liquids

Publication: Canadian Journal of Chemistry
7 May 2018

Abstract

The present work examined the potential for two plants grown on Canadian soil, Symphytum officinale L. (common comfrey) and Panicum virgatum L. (switchgrass), to produce 5-hydroxymethylfurfural using metal chloride catalysis in two ionic liquids, 1-butyl-3-methylimidazolium chloride or 1-ethyl-3-methylimidazolium chloride. Furthermore, two pre-treatments, namely the dilute sulfuric acid treatment and the methanol extraction, were studied as a way to improve sugar availability and increase 5-hydroxymethylfurfural yields compared with untreated biomass. The 0.5 mol/L H2SO4 hydrolysis under autoclave conditions produced sugar-rich extracts containing 230 ± 23 mg of sugars per gram of hydrolysed biomass for comfrey and 425 ± 13 mg of sugars per gram of hydrolysed biomass for switchgrass. The methanol extraction produced extracts high in simple sugars with concentration of 300 ± 60 mg of sugars per gram of dry extract for comfrey and 202 ± 16 mg of sugars per gram of dry extract for switchgrass. The yield of 5-hydroxymethylfurfural was improved from less than 1% using untreated biomass to 6.04% and 18.0% using dry methanol extracts of comfrey and switchgrass, respectively. These yields, although small, are important, as they show for the first time that a methanol extract could enhance the metal chloride catalysis in ionic liquids for 5-hydroxymethylfurfural production from biomass.

Résumé

Dans le cadre des présents travaux, nous avons évalué les perspectives pour deux plantes poussant au Canada, Symphytum officinale L. (consoude commune) et Panicum virgatum L. (panic érigé), de produire le 5-hydroxyméthylfurfural par catalyse aux chlorures métalliques dans deux liquides ioniques : le chlorure de 1-butyl-3-méthylimidazolium ou le chlorure de 1-éthyl-3-méthylimidazolium. De plus, deux prétraitements, soit le traitement à l’acide sulfurique dilué et l’extraction au méthanol, ont été étudiés comme moyens pour améliorer la disponibilité des sucres et augmenter les rendements en 5-hydroxyméthylfurfural par rapport à la biomasse non traitée. L’hydrolyse dans le H2SO4 à 0,5 mol/L en conditions d’autoclave a produit des extraits riches en sucres contenant 230 ± 23 mg de sucres par gramme de biomasse hydrolysée, dans le cas de la consoude, et 425 ± 13 mg de sucres par g de biomasse hydrolysée, dans le cas du panic érigé. L’extraction au méthanol a produit des extraits riches en sucres simples dont les concentrations étaient de 300 ± 60 mg de sucres par g d’extrait sec de consoude et de 202 ± 16 mg de sucres par g d’extrait sec de panic érigé. Le rendement en 5-hydroxyméthylfurfural de moins de 1 %, obtenu à partir de biomasse non traitée, a été amélioré à 6,04 % et 18,0 % en utilisant des extraits méthanoliques secs de consoude et panic érigé, respectivement. Ces rendements, bien que faibles, sont significatifs, car ils permettent de faire pour la première fois la démonstration qu’un extrait méthanolique peut favoriser la catalyse aux chlorures métalliques dans des liquides ioniques en vue de produire le 5-hydroxyméthylfurfural à partir de biomasse.

Get full access to this article

View all available purchase options and get full access to this article.

References

(1)
da Costa Lopes A. M., João K. G., Morais A. R. C., Bogel-Łukasik E., and Bogel-Łukasik R. Sustainable Chem. Processes 2013, 1, 3.
(2)
Binder J. B. and Raines R. T. J. Am. Chem. Soc. 2009, 131, 1979.
(3)
Guan J., Cao Q., Guo X., and Mu X. Comput. Theor. Chem. 2011, 963, 453.
(4)
Chun J., Lee J., Yi Y., Hong S., and Chung C. Starch/Stärke 2010, 62, 326.
(5)
Despax-Machefel, S. Ph.D. Dissertation, Université de Reims Champagne-Ardenne, Reims, France, 2013.
(6)
Eminov S., Wilton-Ely J. D. E. T., and Hallett J. P. ACS Sustainable Chem. Eng. 2014, 2, 978.
(7)
Fachri B. A., Abdilla R. M., Rasrendra C. B., and Heeres H. J. Chem. Eng. Res. Des. 2016, 109, 65.
(8)
Abou-Yousef H., Hassan E. B., and Steele P. J. Fuel Chem. Technol. 2013, 41, 214.
(9)
Lee J.-W., Ha M.-G., Yi Y.-B., and Chung C.-H. Carbohydr. Res. 2011, 346, 177.
(10)
Li C., Zhang Z., and Zhao Z. K. Tetrahedron Lett. 2009, 50, 5403.
(11)
Li F., Shi G., Wang G., Guo T., and Lei X. Res. Chem. Intermed. 2016, 42, 6757.
(12)
Liu J., Tang Y., Wu K., Bi C., and Cui Q. Carbohydr. Res. 2012, 350, 20.
(13)
Nguyen C. V., Lewis D., Chen W.-H., Huang H.-W., Alothman Z. A., Yamauchi Y., and Wu K.-C. W. Catal. Today 2016, 278, 344.
(14)
Peleteiro S., Garrote G., Santos V., and Parajo J. C. Afinidad 2014, 71, 202.
(15)
Ren Q., Huang Y., Ma H., Wang F., Gao J., and Xu J. BioResources 2013, 8, 1563.
(16)
Shi J., Liu W., Wang N., Yang Y., and Wang H. Catal. Lett. 2014, 144, 252.
(17)
Song J., Zhang B., Shi J., Fan H., Ma J., Yang Y., and Han B. RSC Adv. 2013, 3, 20085.
(18)
Sun J., Yuan X., Shen Y., Yi Y., Wang B., Xu F., and Sun R. Ind. Crops Prod. 2015, 70, 266.
(19)
Wang P., Yu H., Zhan S., and Wang S. Bioresour. Technol. 2011, 102, 4179.
(20)
Xiao S., Liu B., Wang Y., Fang Z., and Zhang Z. Bioresour. Technol. 2014, 151, 361.
(21)
Yan L., Greenwood A. A., Hossain A., and Yang B. RSC Adv. 2014, 4, 23492.
(22)
Yang Y., Hu C., and Abu-Omar M. M. Green Chem. 2012, 14, 509.
(23)
Yi Y.-B., Lee J.-W., Hong S.-S., Choi Y.-H., and Chung C.-H. J. Ind. Eng. Chem. 2011, 17, 6.
(24)
Yi Y.-B., Lee J.-W., Choi Y.-H., Park S.-M., and Chung C.-H. Biomass Bioenergy 2012, 39, 484.
(25)
Zhang Z. and Zhao Z. K. Bioresour. Technol. 2010, 101, 1111.
(26)
Zhao H., Holladay J. E., Brown H., and Zhang Z. C. Science 2007, 316, 1597.
(27)
Kumar P., Barrett D.M., Delwiche M. J., and Stroeve P. Ind. Eng. Chem. Res. 2009, 48, 3713.
(28)
Smith, S. M.Sc. Dissertation, Laurentian University, Sudbury, Ont., 2012.
(29)
Chin L., Leung D. W. M., and Taylor H. H. Chemosphere 2009, 76, 711.
(30)
Chin L., Leung D. W. M., and Taylor H. H. Chem. Ecol. 2009, 25, 397.
(31)
Reed R. L., Sanderson M. A., Allen V. G., and Zartman R. E. Commun. Soil Sci. Plant Anal. 2002, 33, 1187.
(32)
Reed R. L., Sanderson M. A., Allen V. G., and Matches A. G. Commun. Soil Sci. Plant Anal. 1999, 30, 2655.
(33)
DuBois M., Gilles K. A., Hamilton J. K., Rebers P. A., and Smith F. Anal. Chem. 1956, 28, 350.
(34)
Wood I. P., Elliston A., Ryden P., Bancroft I., Roberts I. N., and Waldron K. W. Biomass Bioenergy 2012, 44, 117.
(35)
Chow P. S. and Landhäusser S. M. Tree Physiol. 2004, 24, 1129.
(36)
Blunden C. A. and Wilson M. F. Anal. Biochem. 1985, 151, 403.
(37)
Godin B., Ghysel F., Agneessens R., Schmit T., Gofflot S., Lamaudière S., Sinnaeve G., Goffart J.-P., Gerin P. A., Stilmant D., and Delcarte J. Biotechnol. Agron. Soc. Environ. 2010, 14(S2), 549.
(38)
Esteghlalian A., Hashimoto A. G., Fenske J. J., and Penner M. H. Bioresour. Technol. 1997, 59, 129.
(39)
McMillan, J. D. In Enzymatic Conversion of Biomass for Fuels Production; Himmel, M. E., Baker, J. O., Overend, R. P., Eds.; American Chemical Society: Washington, D.C., 1994; pp. 292–324.
(40)
Hinman N. D., Schell D. J., Riley J., Bergeron P. W., and Walter P. J. Appl. Biochem. Biotechnol. 1992, 34, 639.
(41)
Wang C., Fu L., Tong X., Yang Q., and Zhang W. Carbohydr. Res. 2012, 347, 182.

Supplementary Material

Supplementary data (cjc-2017-0663suppla.docx)

Information & Authors

Information

Published In

cover image Canadian Journal of Chemistry
Canadian Journal of Chemistry
Volume 96Number 8August 2018
Pages: 815 - 820

History

Received: 25 October 2017
Accepted: 23 April 2018
Accepted manuscript online: 7 May 2018
Version of record online: 7 May 2018

Permissions

Request permissions for this article.

Key Words

  1. 5-hydroxymethyfurfural
  2. catalysis
  3. comfrey
  4. pre-treatment
  5. switchgrass

Mots-clés

  1. 5-hydroxyméthyfurfural
  2. catalyse
  3. consoude
  4. pré-traitement
  5. panic érigé

Authors

Affiliations

Alexandrine L. Martel
Department of Chemistry & Biochemistry, Biomolecular Sciences Programme, Laurentian University, 935 Ramsey Lake Road, Sudbury, ON P3E 2C6, Canada.
Sabine Montaut [email protected]
Department of Chemistry & Biochemistry, Biomolecular Sciences Programme, Laurentian University, 935 Ramsey Lake Road, Sudbury, ON P3E 2C6, Canada.
Gerardo Ulíbarri [email protected]
Department of Chemistry & Biochemistry, Biomolecular Sciences Programme, Laurentian University, 935 Ramsey Lake Road, Sudbury, ON P3E 2C6, Canada.
Graeme A. Spiers
School of the Environment, Department of Earth Sciences and Department of Biology, Laurentian University, 935 Ramsey Lake Road, Sudbury, ON P3E 2C6, Canada.

Notes

Copyright remains with the author(s) or their institution(s). Permission for reuse (free in most cases) can be obtained from RightsLink.

Metrics & Citations

Metrics

Other Metrics

Citations

Cite As

Export Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

There are no citations for this item

View Options

Get Access

Login options

Check if you access through your login credentials or your institution to get full access on this article.

Subscribe

Click on the button below to subscribe to Canadian Journal of Chemistry

Purchase options

Purchase this article to get full access to it.

Restore your content access

Enter your email address to restore your content access:

Note: This functionality works only for purchases done as a guest. If you already have an account, log in to access the content to which you are entitled.

View options

PDF

View PDF

Full Text

View Full Text

Media

Media

Other

Tables

Share Options

Share

Share the article link

Share on social media