Cookies Notification

We use cookies to improve your website experience. To learn about our use of cookies and how you can manage your cookie settings, please see our Cookie Policy.
×

An introduced plant is associated with declines in terrestrial arthropods, but no change in stream invertebrates

Publication: Canadian Journal of Fisheries and Aquatic Sciences
26 September 2018

Abstract

Riverine systems often spread non-native species, yet the co-occurring impacts of introduced riparian vegetation on aquatic- and terrestrial-derived resources are unknown. We compared aquatic and terrestrial arthropod communities and their flux into and out of streams in riparian reaches invaded and uninvaded by Robinia neomexicana, a woody plant introduced to a western Colorado watershed. We found that invaded reaches had fewer terrestrial arthropods collected off foliage, conceivably because of the plant’s later leaf-out phenology. Overall, seasonal and annual factors best described terrestrial and aquatic arthropod communities. However, when we evaluated vegetation and stream characteristics in lieu of season and year, we found terrestrial arthropod biomass and richness were negatively related to cover of R. neomexicana and positively related to vegetative cover, forb cover, and vertical vegetation structure. Our results suggest ecosystems respond to landscape variation differently, where directly related food web components (i.e., terrestrial arthropods on introduced vegetation) respond stronger than more distally related constituents (i.e., aquatic insects).

Résumé

Si les réseaux fluviaux participent souvent à la propagation d’espèces non indigènes, les impacts cooccurrents de la végétation riveraine introduite sur les ressources de sources aquatiques et terrestres ne sont pas connus. Nous avons comparé des communautés d’arthropodes aquatiques et terrestres et leurs flux en direction et en provenance de cours d’eau dans des tronçons riverains envahis et non envahis par Robinia neomexicana, une plante ligneuse introduite dans un bassin versant de l’ouest du Colorado. Nous avons constaté que les tronçons envahis comptaient moins d’arthropodes terrestres recueillis sur le feuillage, possiblement en raison de la phénologie tardive du débourrement de la plante. Globalement, des facteurs saisonniers et annuels décrivent le mieux les communautés d’arthropodes terrestres et aquatiques. Cependant, l’évaluation de la végétation et des caractéristiques du cours d’eau plutôt que de la saison et de l’année révèle que la biomasse et la richesse des arthropodes terrestres sont négativement reliées à la couverture de R. neomexicana et positivement reliées à la couverture végétale, à la couverture d’herbes non graminéennes et à la structure verticale de la végétation. Nos résultats donnent à penser que les écosystèmes réagissent de différentes manières à des variations du paysage, les éléments de réseaux trophiques directement reliés (c.-à-d. les arthropodes terrestres sur la végétation introduite) réagissant plus fortement que des éléments moins étroitement reliés (c.-à-d. les insectes aquatiques). [Traduit par la Rédaction]

Get full access to this article

View all available purchase options and get full access to this article.

References

Anderson M.J. 2001. Permutation tests for univariate or multivariate analysis of variance and regression. Can. J. Fish. Aquat. Sci. 58(3): 626–639.
Anderson, M.J. 2005. PERMANOVA: A FORTRAN computer program for permutational multivariate analysis of variance. Department of Statistics, University of Auckland, Auckland, New Zealand.
Anderson, M., Gorley, R.N., and Clarke, R.K. 2008. PERMANOVA+ for PRIMER: guide to software and statistical methods. PRIMER-E, Plymouth, UK.
Armstrong J.B., Schindler D.E., Omori K.L., Ruff C.P., and Quinn T.P. 2010. Thermal heterogeneity mediates the effects of pulsed subsidies across a landscape. Ecology, 91(5): 1445–1454.
Ballard M., Hough-Goldstein J., and Tallamy D. 2013. Arthropod communities on native and nonnative early successional plants. Environ. Entomol. 42(5): 851–859.
Bartis, J.T., LaTourrette, T., Dixon, L., Peterson, D., and Cecchine, G. 2005. Oil shale development in the United States: prospects and policy issues. Rand Corporation, Santa Monica, Calif., USA.
Baxter C.V., Fausch K.D., and Saunders W.C. 2005. Tangled webs: reciprocal flows of invertebrate prey link streams and riparian zones. Freshw. Biol. 50(2): 201–220.
Burnham, K.P., and Anderson, D.R. 2002. Model selection and multimodel inference: a practical information-theoretic approach. Springer, New York, USA.
Cadmus P., Pomeranz J.P.F., and Kraus J.M. 2016. Low-cost floating emergence net and bottle trap: comparison of two designs. J. Freshw. Ecol. 31(4): 653–658.
Collins S.F. and Baxter C.V. 2014. Heterogeneity of riparian habitats mediates responses of terrestrial arthropods to a subsidy of Pacific salmon carcasses. Ecosphere, 5(11): 1–14.
Degomez T. and Wagner M.R. 2001. Arthropod diversity of exotic vs. native Robinia species in northern Arizona. Agric. For. Entomol. 3: 19–27.
Donnell, J.R. 1961. Tertiary geology and oil-shale resources of the Piceance Creek Basin, between the Colorado and White rivers, northwestern Colorado. U.S. Government Printing Office, Washington, D.C., USA.
Ferreira W.R., Ligeiro R., Macedo D.R., Hughes R.M., Kaufmann P.R., Oliveira L.G., and Callisto M. 2014. Importance of environmental factors for the richness and distribution of benthic macroinvertebrates in tropical headwater streams. Freshw. Sci. 33(3): 860–871.
Greenwood M.J. 2014. More than a barrier: The complex effects of ecotone vegetation type on terrestrial consumer consumption of an aquatic prey resource. Austral Ecol. 39(8): 941–951.
Guillot G. and Rousset F. 2013. Dismantling the Mantel tests. Methods Ecol. Evol. 4(4): 336–344.
Hladyz S., Åbjörnsson K., Giller P.S., and Woodward G. 2011. Impacts of an aggressive riparian invader on community structure and ecosystem functioning in stream food webs. J. Appl. Ecol. 48(2): 443–452.
Hobbs R.J., Arico S., Aronson J., Baron J.S., Bridgewater P., Cramer V.A., Epstein P.R., Ewel J.J., Klink C.A., Lugo A.E., Norton D., Ojima D., Richardson D.M., Sanderson E.W., Valladares F., Vila M., Zamora R., and Zobel M. 2006. Novel ecosystems: theoretical and management aspects of the new ecological world order. Glob. Ecol. Biogeogr. 15(1): 1–7.
Iwata T., Nakano S., and Murakami M. 2003. Stream meanders increase insectivorous bird abundance in riparian deciduous forests. Ecography, 26(3): 325–337.
Keane R.M. and Crawley M.J. 2002. Exotic plant invasions and the enemy release hypothesis. Trends Ecol. Evol. 17(4): 164–170.
Kominoski J.S., Marczak L.B., and Richardson J.S. 2011. Riparian forest composition affects stream litter decomposition despite similar microbial and invertebrate communities. Ecology, 92(1): 151–159.
Larsen S., Muehlbauer J.D., and Marti E. 2016. Resource subsidies between stream and terrestrial ecosystems under global change. Glob. Change Biol. 22(7): 2489–2504.
Litt A.R., Cord E.E., Fulbright T.E., and Schuster G.L. 2014. Effects of invasive plants on arthropods. Conserv. Biol. 28(6): 1532–1549.
Little, E.L. 1976. Atlas of United States trees, minor western hardwoods. U.S. Department of Agriculture, Forest Service, Washington, D.C., USA.
McCaffery M. and Eby L. 2016. Beaver activity increases aquatic subsidies to terrestrial consumers. Freshw. Biol. 61(4): 518–532.
McInerney P.J., Rees G.N., Gawne B., Suter P., Watson G., and Stoffels R.J. 2016. Invasive willows drive instream community structure. Freshw. Biol. 61(9): 1379–1391.
Merritt, R.W., Cummins, K.W., and Berg, M.B. 1996. An introduction to the aquatic insects of North America. Kendall Hunt Publishing Company, Dubuque, Iowa, USA.
Mineau M.M., Baxter C.V., and Marcarelli A.M. 2011. A non-native riparian tree (Elaeagnus angustifolia) changes nutrient dynamics in streams. Ecosystems, 14(3): 353–365.
Mineau M., Baxter C., Marcarelli A., Minshall G.W., and Baxter G. 2012. An invasive riparian tree reduces stream ecosystem efficiency via a recalcitrant organic matter subsidy. Ecology, 93(7): 1501–1508.
Moline A.B. and Poff N.L. 2008. Growth of an invertebrate shredder on native (Populus) and non-native (Tamarix, Elaeagnus) leaf litter. Freshw. Biol. 53(5): 1012–1020.
Murakami M. and Nakano S. 2002. Indirect effect of aquatic insect emergence on a terrestrial insect population through predation by birds. Ecol. Lett. 5(3): 333–337.
Nakano S. and Murakami M. 2001. Reciprocal subsidies: dynamic interdependence between terrestrial and aquatic food webs. Proc. Natl. Acad. Sci. U.S.A. 98(1): 166–170.
NOAA. 2016. National Centers for Environmental Information, Climate at a Glance: U.S. Time Series, Precipitation. Available from http://www.ncdc.noaa.gov/cag/ [accessed 3 January 3 2017].
Ode, P.R., Fetscher, A.E., and Busse, L.B. 2016. Standard Operating Procedures (SOP) for the collection of field data for bioassessments of California wadeable streams: benthic macroinvertebrates, algae, and physical habitat. California State Water Resources Control Board Surface Water Ambient Monitoring Program, Sacramento, Calif., USA.
Pavek, D.S. 1993. Robinia neomexicana. Available from http://www.fs.fed.us/database/feis/ [accessed 9 October 2014].
Polis G.A., Anderson W.B., and Holt R.D. 1997. Toward an integration of landscape and food web ecology: the dynamics of spatially subsidized food webs. Annu. Rev. Ecol. Syst. 28: 289–316.
Richardson D.M., Holmes P.M., Esler K.J., Galatowitsch S.M., Stromberg J.C., Kirkman S.P., Pysek P., and Hobbs R.J. 2007. Riparian vegetation: degradation, alien plant invasions, and restoration prospects. Divers. Distrib. 13(1): 126–139.
Roon D.A., Wipfli M.S., Wurtz T.L., and Blanchard A.L. 2016. Invasive European bird cherry (Prunus padus) reduces terrestrial prey subsidies to urban Alaskan salmon streams. Can. J. Fish. Aquat. Sci. 73(11): 1679–1690.
Triplehorn, C.A., and Johnson, N. 2005. Borror and DeLong’s introduction to the study of insects. Thomson Brooks/Cole, Belmont, Calif., USA.
Wade M.R., Scholz B.C., Lloyd R.J., Cleary A.J., Franzmann B.A., and Zalucki M.P. 2006. Temporal variation in arthropod sampling effectiveness: the case for using the beat sheet method in cotton. Entomol. Exp. Appl. 120(2): 139–153.
Ward, J.V., Kondratieff, B.C., and Zuellig, R.E. 2002. An illustrated guide to the mountain stream insects of Colorado. University Press of Colorado, Boulder, Colo., USA.
Wilson J.R., Dormontt E.E., Prentis P.J., Lowe A.J., and Richardson D.M. 2009. Something in the way you move: dispersal pathways affect invasion success. Trends Ecol. Evol. 24(3): 136–144.
Wipfli M.S. 1997. Terrestrial invertebrates as salmonid prey and nitrogen sources in streams: contrasting old-growth and young-growth riparian forests in southeastern Alaska, U.S.A. Can. J. Fish. Aquat. Sci. 54(6): 1259–1269.
Wolman, M.G. 1954. A method of sampling coarse river-bed material. American Geophysical Union.

Information & Authors

Information

Published In

cover image Canadian Journal of Fisheries and Aquatic Sciences
Canadian Journal of Fisheries and Aquatic Sciences
Volume 76Number 8August 2019
Pages: 1314 - 1325

History

Received: 13 March 2018
Accepted: 23 September 2018
Accepted manuscript online: 26 September 2018
Version of record online: 26 September 2018

Permissions

Request permissions for this article.

Authors

Affiliations

Hannah L. Riedl* [email protected]
1474 Campus Delivery, Department of Fish, Wildlife and Conservation Biology, Colorado State University, Fort Collins, CO 80523-1474, USA.
William H. Clements
1474 Campus Delivery, Department of Fish, Wildlife and Conservation Biology, Colorado State University, Fort Collins, CO 80523-1474, USA.
Liba Pejchar
1474 Campus Delivery, Department of Fish, Wildlife and Conservation Biology, Colorado State University, Fort Collins, CO 80523-1474, USA.

Notes

*
Present address: 1520 E. 6th Avenue, Montana Department of Environmental Quality, Helena, MT 59601, USA.
Copyright remains with the author(s) or their institution(s). Permission for reuse (free in most cases) can be obtained from RightsLink.

Metrics & Citations

Metrics

Other Metrics

Citations

Cite As

Export Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

1. Invasive species drive cross-ecosystem effects worldwide
2. Habitat change and interspecific associations mediate the response of riparian ground-dwelling arthropod assemblages to flooding in the Three Gorges Reservoir
3. A near-range plant invasion homogenizes riparian vegetation but leads to more productive bird communities

View Options

Login options

Check if you access through your login credentials or your institution to get full access on this article.

Subscribe

Click on the button below to subscribe to Canadian Journal of Fisheries and Aquatic Sciences

Purchase options

Purchase this article to get full access to it.

Restore your content access

Enter your email address to restore your content access:

Note: This functionality works only for purchases done as a guest. If you already have an account, log in to access the content to which you are entitled.

View options

PDF

View PDF

Full Text

View Full Text

Media

Tables

Media

Share Options

Share

Share the article link

Share on social media