Effects of land use on summer thermal regimes in critical salmonid habitats of the Pacific Northwest

Publication: Canadian Journal of Fisheries and Aquatic Sciences
16 July 2018

Abstract

The effect of climate change on stream temperature regimes is of significant concern to natural resource managers focused on protecting cold-water-dependent species. Nevertheless, understanding of how human land-use activities may act to exacerbate the effects of climate change on stream temperature regimes is limited. Using extensive stream temperature data with high-resolution climate and habitat data, we quantified how land management activities are related to summer stream temperatures across the Pacific Northwest, USA. We then described the distribution of land management practices influencing summer thermal regimes relative to the distribution of salmonid fish species of conservation concern. After accounting for climatic and geophysical variation, we detected a strong relationship between livestock grazing and summer thermal regimes. Maximum, average, and diel variation in water temperature was greater where livestock grazing was present. Livestock grazing was widespread, occurring in 43%–100% of sites supporting salmonid species of conservation concern. Thus, current land management practices may be intensifying the effects of ongoing climate change in freshwater habitats, acting to further threaten cold-water fishes of conservation concern.

Résumé

L’effet des changements climatiques sur les régimes thermiques des cours d’eau constitue une importante préoccupation pour les gestionnaires de ressources naturelles qui œuvrent à la protection des espèces dépendant de l’eau froide. La compréhension de l’exacerbation des effets des changements climatiques sur les régimes thermiques des cours d’eau que pourraient causer les activités humaines d’utilisation du sol est toutefois limitée. En combinant d’abondantes données sur la température des cours d’eau à des données climatiques et sur l’habitat de haute résolution, nous quantifions le lien entre les activités d’aménagement du territoire et les températures estivales de cours d’eau dans le Pacific Northwest (États-Unis). Nous décrivons ensuite la répartition des pratiques d’aménagement du territoire qui influencent les régimes thermiques estivaux au vu de la répartition des espèces de salmonidés dont la conservation est préoccupante. Après avoir pris en compte les variations climatiques et géophysiques, nous observons une forte relation entre le pacage du bétail et les régimes thermiques estivaux. Les variations maximums, moyennes et nycthémérales des températures de l’eau sont les plus grandes en présence de pacage d’animaux. Ce dernier est répandu, étant présent dans de 43 % à 100 % des sites supportant des espèces de salmonidés dont la conservation est préoccupante. Les pratiques actuelles d’aménagement du territoire pourraient donc intensifier les effets des changements climatiques en cours dans les habitats d’eau douce, rehaussant la menace qui pèse sur les poissons d’eau froide dont la conservation est préoccupante. [Traduit par la Rédaction]

Get full access to this article.

View all available purchase options and get full access to this article.

References

Al-Chokhachy R., Roper B.B., and Archer E.K. 2010. Evaluating the status and trends of physical stream habitat in headwater streams within the interior Columbia River and upper Missouri River basins using an index approach. Trans. Am. Fish. Soc. 139(4): 1041–1059.
Al-Chokhachy R., Schmetterling D., Clancy C., Saffel P., Kovach R., Nyce L., Liermann B., Fredenberg W., and Pierce R. 2016. Are brown trout replacing or displacing bull trout populations in a changing climate? Can. J. Fish. Aquat. Sci. 73(9): 1395–1404.
Allendorf F.W. and Leary R.F. 1988. Conservation and distribution of genetic variation in a polytypic species, the cutthroat trout. Conserv. Biol. 2(2): 170–184.
Arismendi I., Johnson S.L., Dunham J.B., and Haggerty R. 2013. Descriptors of natural thermal regimes in streams and their responsiveness to change in the Pacific Northwest of North America. Freshw. Biol. 58(5): 880–894.
Armour C.L., Duff D.A., and Elmore W. 1991. The effects of livestock grazing on riparian and stream ecosystems. Fisheries, 16(9): 7–11.
Arnold T.W. 2010. Uninformative parameters and model selection using Akaike’s Information Criterion. J. Wildl. Manage. 74(6): 1175–1178.
Bartón, K. 2012. Package ‘MuMIn’: multi-model inference. R Package, version 1(7), 11.
Baxter C.V., Frissell C.A., and Hauer F.R. 1999. Geomorphology, logging roads, and the distribution of bull trout spawning in a forested river basin: implications for management and conservation. Trans. Am. Fish. Soc. 128(5): 854–867.
Belsky A.J., Matzke A., and Uselman S. 1999. Survey of livestock influences on stream and riparian ecosystems in the western United States. J. Soil Water Conserv. 54(1): 419–431.
Caissie D. 2006. The thermal regime of rivers: a review. Freshw. Biol. 51(8): 1389–1406.
Crozier L.G., Hendry A.P., Lawson P.W., Quinn T.P., Mantua N.J., Battin J., Shaw R.G., and Huey R.B. 2008a. Potential responses to climate change in organisms with complex life histories: evolution and plasticity in Pacific salmon. Evol. Appl. 1(2): 252–270.
Crozier L.G., Zabel R.W., and Hamlet A.F. 2008b. Predicting differential effects of climate change at the population level with life-cycle models of spring Chinook salmon. Glob. Change Biol. 14(2): 236–249.
Curtin C.G. 2002. Livestock grazing, rest, and restoration in arid landscapes. Conserv. Biol. 16(3): 840–842.
D’Odorico P., Bhattachan A., Davis K.F., Ravi S., and Runyan C.W. 2013. Global desertification: drivers and feedbacks. Adv. Water Resour. 51(1): 326–344.
Dormann C.F., Elith J., Bacher S., Buchmann C., Carl G., Carré G., Marquéz J.R.G., et al. 2013. Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography, 36(1): 27–46.
Dunham J.B., Rosenberger A.E., Luce C.H., and Rieman B.E. 2007. Influences of wildfire and channel reorganization on spatial and temporal variation in stream temperature and the distribution of fish and amphibians. Ecosystems, 10(2): 335–346.
Fleischner T. 1994. Ecological costs of livestock grazing in western North America. Conserv. Biol. 8(3): 629–644.
Groom J.D., Johnson S.L., Seeds J.D., and Ice G.G. 2017. Evaluating links between forest harvest and stream temperature threshold exceedances: the value of spatial and temporal data. J. Am. Water Resour. Assoc. 53(4): 761–773.
Hester E.T. and Doyle M.W. 2011. Human impacts to river temperature and their effects on biological processes: a quantitative synthesis. J. Am. Water Resour. Assoc. 47(3): 571–587.
Holden Z.A., Abatzaglou J.T., Luce C.H., and Baggett L.S. 2011. Empirical downscaling of daily minimum air temperature at very fine resolutions in complex terrain. Agric. For. Meteorol. 151(8): 1066–1073.
Isaak D.J. and Hubert W.A. 2001. A hypothesis about factors that affect maximum summer stream temperatures across montane landscapes. J. Am. Water Resour. Assoc. 37(2): 351–366.
Isaak D.J., Wollrab S., Horan D., and Chandler G. 2012. Climate change effects on stream and river temperatures across the northwest U.S. from 1980–2009 and implications for salmonid fishes. Clim. Change, 113(2): 499–524.
Isaak D.J., Young M.K., Luce C.H., Hostetler S.W., Wenger S.J., Peterson E.E., Ver Hoef J.M., et al. 2016. Slow climate velocities of mountain streams portend their role as refugia for cold-water biodiversity. Proc. Natl. Acad. Sci. U.S.A. 113(16): 4374–4379.
Johnson S.L. and Jones J.A. 2000. Stream temperature responses to forest harvest and debris flows in western Cascades, Oregon. Can. J. Fish. Aquat. Sci. 57(S2): 30–39.
Jones L.A., Muhlfeld C.C., and Marshall L.A. 2017. Projected warming portends seasonal shifts of stream temperatures in the Crown of the Continent Ecosystem, USA and Canada. Clim. Change, 144(4): 641–655.
Kaushal S.S., Likens G.E., Jaworski N.A., Pace M.L., Sides A.M., Seekell D., Belt K.T., et al. 2010. Rising stream and river temperatures in the United States. Front. Ecol. Environ. 8(9): 461–466.
Kershner J.L., Roper B.B., Bouwes N., Henderson R., and Archer E. 2004. An analysis of stream habitat conditions in reference and managed watersheds on some Federal lands within the Columbia River basin. N. Am. J. Fish. Manage. 24(4): 1363–1375.
Kovach R.P., Joyce J.E., Echave J.D., Lindberg M.S., and Tallmon D.A. 2013. Earlier migration timing, decreasing phenotypic variation, and biocomplexity in multiple salmonid species. PLoS ONE, 8: e53807.
Kovach R.P., Muhlfeld C.C., Al-Chokhachy R., Dunham J.B., Letcher B.H., and Kershner J.L. 2016. Impacts of climatic variation on trout: a global synthesis and way forward. Rev. Fish Biol. Fish. 26(2): 135–151.
Larsen D.P., Kaufmann P.R., Kincaid T.M., and Urquhart N.S. 2004. Detecting persistent change in the habitat of salmon-bearing streams in the Pacific Northwest. Can. J. Fish. Aquat. Sci. 61(2): 283–291.
Lawler J.J. 2009. Climate change adaptation strategies for resource management and conservation planning. Ann. N.Y. Acad. Sci. 1162(1): 79–98.
Maheu A., Poff N.L., and St-Hilaire A. 2016. A classification of stream water temperature regimes in the conterminous USA. River Res. Appl. 32(5): 896–906.
Meredith C., Roper B., and Archer E. 2014. Reductions in instream wood in streams near roads in the interior Columbia River basin. N. Am. J. Fish. Manage. 34(3): 493–506.
Miller K.M., Teffer A., Tucker S., Li S., Schulze A.D., Trudel M., Juanes F., et al. 2014. Infectious disease, shifting climates, and opportunistic predators: cumulative factors potentially impacting wild salmon declines. Evol. Appl. 7(7): 812–855.
Moore R., Spittlehouse D.L., and Story A. 2005. Riparian microclimate and stream temperature response to forest harvesting: a review. J. Am. Water Resour. Assoc. 41(4): 813–834.
Morelli T.L., Daly C., Dobrowski S.Z., Dulen D.M., Ebersole J.L., Jackson S.T., Lundquist J.D., et al. 2016. Managing climate change refugia for climate adaptation. PloS ONE, 11: e0159909.
Muhlfeld C.C., Kovach R.P., Jones L.A., Al-Chokhachy R., Boyer M.C., Leary R.F., Lowe W.H., et al. 2014. Invasive hybridization in a threatened species is accelerated by climate change. Nat. Clim. Change, 4(7): 620–624.
Northwest Power and Conservation Council (NPCC). 2015. Columbia River Basin fish and wildlife program costs report. NPCC, Portland, Ore.
Nusslé S., Matthews K.R., and Carlson S.M. 2015. Mediating water temperature increases due to livestock and global change in high elevation meadow streams of the Golden Trout Wilderness. PloS ONE, 10: e0142426.
Nusslé S., Matthews K.R., and Carlson S.M. 2017. Patterns and dynamics of vegetation recovery following grazing cessation in the California golden trout habitat. Ecosphere, 8(7): e01880.
Omernik J.M. 1987. Ecoregions of the conterminous United States. Ann. Assoc. Am. Geogr. 77(1): 118–125.
Penaluna B.E., Abadía-Cardoso A., Dunham J.B., García-Dé León F.J., Gresswell R.E., Luna A.R., Taylor E.B., et al. 2016. Conservation of native pacific trout diversity in western North America. Fisheries, 41(6): 286–300.
Peterson E.E., Ver Hoef J.M., Isaak D.J., Falke J.A., Fortin M., Jordan C.E., McNyset K., et al. 2013. Modelling dendritic ecological networks in space: an integrated network perspective. Ecol. Lett. 16(5): 707–719.
Pierce R., Podner C., Marczak L., and Jones L. 2014. Instream habitat restoration and stream temperature reduction in a whirling disease-positive spring creek in the Blackfoot River basin, Montana. Trans. Am. Fish. Soc. 143(5): 1188–1198.
Poole G.C. and Berman C.H. 2001. An ecological perspective on in-stream temperature: natural heat dynamics and mechanisms of human-caused thermal degradation. Environ. Manage. 27(6): 787–802.
Reiter M., Bilby R.E., Beech S., and Heffner J. 2015. Stream temperature patterns over 35 years in a managed forest of western Washington. J. Am. Water Resour. Assoc. 51(5): 1418–1435.
Ripley T., Scrimgeour G., and Boyce M.S. 2005. Bull trout (Salvelinus confluentus) occurrence and abundance influenced by cumulative industrial developments in a Canadian boreal forest watershed. Can. J. Fish. Aquat. Sci. 62(11): 2431–2442.
Schindler D.E., Augerot X., Fleishman E., Mantua N.J., Riddell B., Ruckelshaus M.H., Seeb J.E., and Webster M.S. 2008. Climate change, ecosystem impacts, and management for Pacific salmon. Fisheries, 33(10): 502–506.
Schultz L.D., Heck M.P., Hockman-Wert D., Allai T., Wenger S., Cook N.A., and Dunham J.B. 2017. Spatial and temporal variability in the effects of wildfire and drought on thermal habitat for a desert trout. J. Arid Environ. 145(10): 60–68.
Steel E.A., Beechie T.J., Torgersen C.E., and Fullerton A.H. 2017. Envisioning, quantifying, and managing thermal regimes on river networks. BioScience, 67(6): 506–521.
Stoddard J.L., Larsen D.P., Hawkins C.P., Johnson R.K., and Norris R.H. 2006. Setting expectations for the ecological condition of streams: the concept of reference condition. Ecol. Appl. 16(4): 1267–1276.
Williams J.E., Haak A.L., Neville H.M., and Colyer W.T. 2009. Potential consequences of climate change to persistence of cutthroat trout populations. N. Am. J. Fish. Manage. 29(3): 533–548.
Winder M. and Schindler D.E. 2004. Climate change uncouples trophic interactions in an aquatic ecosystem. Ecology, 85(8): 2100–2106.
Zuur, A.F., Ieno, E.N., Walker, N., Saveliev, A.A., and Smith, G.M. 2009. Mixed effects models and extensions in ecology with R. Springer, New York.

Supplementary Material

Supplementary data (cjfas-2018-0165suppla.pdf)

Information & Authors

Information

Published In

cover image Canadian Journal of Fisheries and Aquatic Sciences
Canadian Journal of Fisheries and Aquatic Sciences
Volume 76Number 5May 2019
Pages: 753 - 761

History

Received: 25 April 2018
Accepted: 27 June 2018
Published online: 16 July 2018

Permissions

Request permissions for this article.

Authors

Affiliations

Ryan P. Kovach rkovach@usgs.gov
US Geological Survey, Northern Rocky Mountain Science Center, Missoula, MT 59802, USA.
Clint C. Muhlfeld
US Geological Survey, Northern Rocky Mountain Science Center, West Glacier, MT 59936, USA.
Robert Al-Chokhachy
US Geological Survey, Northern Rocky Mountain Science Center, Bozeman, MT 59715, USA.
Jeffrey V. Ojala
US Forest Service, PIBO Monitoring Program, Logan, UT 84321, USA.
Eric K. Archer
US Forest Service, PIBO Monitoring Program, Logan, UT 84321, USA.

Notes

Copyright remains with the author(s) or their institution(s). Permission for reuse (free in most cases) can be obtained from RightsLink.

Metrics & Citations

Metrics

Other Metrics

Citations

Cite As

Export Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

1. An evidence-based review of the effectiveness of riparian buffers to maintain stream temperature and stream-associated amphibian populations in the Pacific Northwest of Canada and the United States
2. Phylogenetic diversity efficiently and accurately prioritizes conservation of aquatic macroinvertebrate communities
3. Which environmental factors control extreme thermal events in rivers? A multi-scale approach (Wallonia, Belgium)
4. Effects of climate change on the life stages of stream‐dwelling brown trout ( Salmo trutta Linnaeus, 1758) at the rear edge of their native distribution range
5. Principal components of thermal regimes in mountain river networks

View Options

Get Access

Login options

Check if you access through your login credentials or your institution to get full access on this article.

Subscribe

Click on the button below to subscribe to Canadian Journal of Fisheries and Aquatic Sciences

Purchase options

Purchase this article to get full access to it.

Restore your content access

Enter your email address to restore your content access:

Note: This functionality works only for purchases done as a guest. If you already have an account, log in to access the content to which you are entitled.

View options

Full Text

Open Full Text

PDF

Download PDF

Media

Media

Other

Tables

Share Options

Share

Share the article link

Share with email

Share on social media