Cookies Notification

We use cookies to improve your website experience. To learn about our use of cookies and how you can manage your cookie settings, please see our Cookie Policy.
×
Editor's Choice

An assessment of hybridization potential between Atlantic and Pacific salmon

Publication: Canadian Journal of Fisheries and Aquatic Sciences
3 February 2022

Abstract

Salmonids possess straying abilities that allows them to exploit open territory and establish new populations. Atlantic salmon (Salmo salar) are expanding their distribution primarily as first-generation escapes from aquaculture, whereas Pacific salmon (Oncorhynchus spp.) are expanding their range in polar and temperate regions due to both anthropogenic and natural influences. Here we utilize artificial intergeneric reciprocal crosses to assess the ability of seven species of Pacific salmon to hybridize with Atlantic salmon. Most cross types were found to produce low numbers of hatched embryos, but none survived to sexual maturation. Survivors consisted of diploids and triploids containing both Atlantic and Pacific salmon parental genomes. Thus, introgression of DNA between Pacific and Atlantic salmon may occur to form F1 hybrids, but transmission to subsequent generations is expected to be rare and occur only over evolutionary time scales. Further, the low viability observed for the most part at early stages of development and in both reciprocal crosses indicates that intergeneric crosses in nature between Atlantic and Pacific salmon are expected to have severe fitness consequences for both dams and sires.

Résumé

Les salmonidés ont des capacités de vagabondage qui leur permettent d’exploiter des territoires libres et d’établir de nouvelles populations. Les saumons de l’Atlantique (Salmo salar) élargissent leur aire de répartition principalement par l’échappement d’individus de première génération d’installations aquacoles, alors que les saumons du Pacifique (Oncorhynchus spp.) élargissent leur aire de répartition en régions polaires et tempérées en raison d’influences d’origine humaine et naturelle. Nous avons utilisé des croisements réciproques intergénériques artificiels pour évaluer la capacité de sept espèces de saumons du Pacifique de s’hybrider avec des saumons de l’Atlantique. Si la plupart des types de croisement ont produit un petit nombre d’embryons éclos, aucun de ces derniers n’a survécu jusqu’à la maturité sexuelle. Les survivants consistaient en des diploïdes et des triploïdes contenant les génomes parentaux de saumons de l’Atlantique et du Pacifique. Ainsi, l’introgression d’ADN entre des saumons du Pacifique et de l’Atlantique peut se produire pour former des hybrides F1, mais la transmission à des générations subséquentes devrait être rare et ne se produire qu’à des échelles temporelles caractéristiques de l’évolution. En outre, la faible viabilité généralement observée aux premières étapes du développement et chez les deux croisements réciproques indique que les croisements intergénériques de saumons de l’Atlantique et du Pacifique dans la nature devraient avoir d’importantes répercussions sur l’aptitude des mères et des pères. [Traduit par la Rédaction]

Get full access to this article

View all available purchase options and get full access to this article.

References

Aas, O., Klemetsen, A., Einum, S., and Skurdal, J. 2011. Atlantic salmon ecology. John Wiley & Sons, Oxford, UK.
Abbott R., Albach D., Ansell S., Arntzen J.W., Baird S.J.E., Bierne N., et al. 2013. Hybridization and speciation. J. Evol. Biol. 26: 229–246.
Allendorf, F., Luikart, S., and Aitkin, S. 2013. Conservation and genetics of populations. Wiley, Hoboken.
Arai K. 1984. Developmental genetic studies on salmonids morphogenesis isozyme phenotypes and chromosomes in hybrid embryos. Mem. Fac. Fish. Hokkaido Univ. 31(1–2): 1–215.
Arnold M. and Hodges S. 1995. Are natural hybrids fit or unfit relative to their parents? Trends Ecol. Evol, 10: 67–71.
Ban M., Nagoya H., Sato S., Yaegashi H., Ichimura M., and Sato N. 2013. Artificial and natural cross breeding between Atlantic salmon and salmonids currently present in Japan. Fish. Sci. 79: 967–975.
Bartley D.M., Gall G.A.E., and Bentley B. 1990. Biochemical genetic detection of natural and artificial hybridization of chinook and coho salmon in northern California. Trans. Am. Fish. Soc. 119(3): 431–437.
Baxter J.S., Taylor E.B.A., Devlin R.H., Hagen J., and McPhail J.D. 1997. Evidence for natural hybridization between Dolly Varden (Salvelinus malma) and bull trout (Salvelinus confluentus) in a north central British Columbia watershed. Can. J. Fish. Aquat. Sci. 54(2): 421–429.
Bilous M. and Dunmall K. 2020. Atlantic salmon in the Canadian Arctic: potential dispersal, establishment, and interaction with Arctic char. Rev. Fish Biol. Fish. 30: 463–483.
Blanc J.M. and Chevassus B. 1979. Interspecific hybridization of salmonid fish. I. Hatching and survival up to the 15th day after hatching in F1 generation hybrids. Aquaculture, 18: 21–34.
Bull, J.J. 1983. Evolution of sex determining mechanisms. Benjamin/Cummings, Menlo Park, Calif.
Chevassus B. 1979. Hybridization in salmonids: results and perspectives. Aquaculture, 17: 113–128.
Christensen K.A., Leong J.S., Sakhrani D., Biagi C.A., Minkley D.R., Withler R.E., et al. 2018. Chinook salmon (Oncorhynchus tshawytscha) genome and transcriptome. PLoS ONE, 13(4): e0195461.
Christensen K.A., Rondeau E.B., Minkley D.R., Sakhrani D., Biagi C.A., Flores A.M., et al. 2020. The sockeye salmon genome, transcriptome, and analyses identifying population defining regions of the genome. PLoS ONE, 15(10): e0240935. ..
Crawford S.S. and Muir A.M. 2008. Global introductions of salmon and trout in the genus Oncorhynchus: 1870–2007. Rev. Fish Biol. Fish. 18: 313–344. ..
Crespi B.J. and Fulton M.J. 2004. Molecular systematics of Salmonidae: combined nuclear data yields a robust phylogeny. Mol. Phylogenet. Evol. 31(2): 658–679. ..
Dangel, J.R., Macy, P.T., and Withler, F.C. 1973. Annotated bibliography of interspecific hybridization of fishes of the subfamily Salmoninae. NOAA Tech. Memor. NMFS NWFC. 1: 1–48.
Devlin R.H. 1993. Sequence of sockeye salmon Type 1 and 2 growth hormone genes and the relationship of rainbow trout with Atlantic and Pacific salmon. Can. J. Fish. Aquat. Sci. 50(8): 1738–1748.
Devlin R.H., Biagi C.A., and Smailus D.E. 2001. Genetic mapping of Y-chromosomal DNA markers in Pacific salmon. Genetica, 111: 43–58.
Devlin R.H., Sakhrani D., Biagi C.A., and Eom K.-W. 2010. Occurrence of incomplete paternal-chromosome retention in GH-transgenic coho salmon being assessed for reproductive containment by pressure-shock-induced triploidy. Aquaculture, 304: 66–78.
Dunmall, K.M., Reist, J.D., Carmack, E.C., Babaluk, J.A., Heide-Jørgensen, M.P., and Docker, M.F. 2013. Pacific salmon in the Arctic: Harbingers of change. In Responses of arctic marine ecosystems to climate change. Edited by F.J. Mueter, D.M.S. Dickson, H.P. Huntington, J.I. Irvine, E.A. Logerwell, S.A. MacLean, L.T. Quakenbush, and C. Roa. Alaska Sea Grant, University of Alaska Fairbanks.
Fjelldal P.G., Wennevik V., Fleming I.A., Hansen T., and Glover K.A. 2014. Triploid (sterile) farmed Atlantic salmon males attempt to spawn with wild females. Aquacult. Environ. Interact. 5(2): 155–162.
Foerster R.E. 1935. Inter-specific cross-breeding of Pacific salmon. Trans. R. Soc. Can. 3: 21–33.
Fujiwara A., Abe S., Yamaha E., Yamazaki F., and Yoshida M.C. 1997. Uniparental chromosome elimination in the early embryogenesis of the inviable salmonid hybrids between masu salmon female and rainbow trout male. Chromosoma, 106(1): 44–52.
Gao G.T., Magadan S., Waldbieser G.C., Youngblood R.C., Wheeler P.A., Scheffler B.E., et al. 2021. A long reads-based de-novo assembly of the genome of the Arlee homozygous line reveals chromosomal rearrangements in rainbow trout. G3 Genes Genomes Genet. 11(4): jkab052.
Glover K.A., Madhun A.S., Dahle G., Sorvik A.G.E., Wennevik V., Skaala O., et al. 2015. The frequency of spontaneous triploidy in farmed Atlantic salmon produced in Norway during the period 2007–2014. BMC Genet. 16: 37.
Glover K.A., Harvey A.C., Hansen T.J., Fjelldal P.G., Besnier F.N., Bos J.B., et al. 2020. Chromosome aberrations in pressure-induced triploid Atlantic salmon. BMC Genet. 21(1): 59.
Grant P.R. and Grant B.R. 2019. Hybridization increases population variation during adaptive radiation. Proc. Natl. Acad. Sci. U.S.A. 116: 23216–23224.
Gray A.K., Evans M.A., and Thorgaard G.H. 1993. Viability and development of diploid and triploid salmonid hybrids. Aquaculture, 112(2–3): 125–142.
Groot, C., and Margolis, L. 1991. Pacific salmon life histories. UBC Press, Vancouver, B.C., Canada.
Hutchings, J.A. 2004. Norms of reaction and phenotypic plasticity in salmonid life histories. In Evolution illuminated: salmon and their relatives. Edited by A.P. Hendry and S.C. Stearns. Oxford University Press, New York. pp. 154–174.
Lien S., Koop B.F., Sandve S.R., Miller J.R., Kent M.P., Nome T., et al. 2016. The Atlantic salmon genome provides insights into rediploidization. Nature, 533(7602): 200–205.
Liu S., Liu Y., Zhou G., Zhang X., Luo C., Feng H., et al. 2001. The formation of tetraploid stocks of red crucian carp × common carp hybrids as an effect of interspecific hybridization. Aquaculture, 192(2–4): 171–186.
Loginova G.A. and Krasnoperova S.V. 1982. An attempt at crossbreeding Atlantic salmon and pink salmon (preliminary report). Aquaculture, 27(4): 329–337.
MacCrimmon H.R. and Gots B.L. 1979. World distribution of Atlantic salmon, Salmo salar. J. Fish. Res. Board Can. 36(4): 422–451.
Macqueen D.J. and Johnston I.A. 2014. A well-constrained estimate for the timing of the salmonid whole genome duplication reveals major decoupling from species diversification. Proc. R. Soc. B Biol. Sci. 281(1778): 20132881.
Makhrov A.A. 2017. A narrowing of the phenotypic diversity range after large rearrangements of the karyotype in Salmonidae: The relationship between saltational genome rearrangements and gradual adaptive evolution. Genes, 8(11): 297.
McKay S.J., Devlin R.H., and Smith M.J. 1996. Phylogeny of Pacific salmon and trout based on growth hormone type-2 and mitochondrial NADH dehydrogenase subunit 3 DNA sequences. Can. J. Fish. Aquat. Sci. 53(5): 1165–1176.
McKay S.J., Smith M.J., and Devlin R.H. 1997. Polymerase chain reaction-based species identification of salmon and coastal trout in British Columbia. Mol. Mar. Biol. Biotechnol. 6(2): 131–140.
McKay S.J., Trautner J., Smith M.J., Koop B.F., and Devlin R.H. 2004. Evolution of duplicated growth hormone genes in autotetraploid salmonid fishes. Genome, 47(4): 714–723.
McKenzie J.L., Araujo H.A., Smith J.L., Schluter D., and Devlin R.H. 2021. Incomplete reproductive isolation and strong transcriptomic response to hybridization between sympatric sister species of salmon. Proc. R. Soc. B Biol. Sci. 288(1950): 20203020.
Nielsen J.L., Ruggerone G.T., and Zimmerman C.E. 2013. Adaptive strategies and life history characteristics in a warming climate: Salmon in the Arctic? Environ. Biol. Fishes, 96: 1187–1226.
Parsons, J.W. 1973. History of salmon in the Great Lakes, 1850–1970. Technical paper 68. US Bureau of Sport Fisheries and Wildlife.
Quinn, T. 2005. The behavior and ecology of Pacific salmon and trout. University of Washington Press, Seattle, Wash., USA.
Refstie T. and Gjedrem T. 1975. Hybrids between Salmonidae species. Hatchability and growth rate in the freshwater period. Aquaculture, 6: 333–342.
Rosenfield J.A., Todd T., and Greil R. 2000. Asymmetric hybridization and introgression between pink salmon and chinook salmon in the Laurentian Great Lakes. Trans. Am. Fish. Soc. 129: 670–679.
Rubidge E.M. and Taylor E. 2004. Hybrid zone structure and the potential role of selection in hybridizing populations of native westslope cutthroat trout (Oncorhynchus clarki lewisi) and introduced rainbow trout (O. mykiss). Mol. Ecol. 13: 3735–3749.
Sandlund O.T., Berntsen H.H., Fiske P., Kuusela J., Muladal R., Niemelä E., et al. 2019. Pink salmon in Norway: the reluctant invader. Biol. Invasions, 21: 1033–1054.
Seeb J.E., Thorgaard G.H., and Utter F.M. 1988. Survival and allozyme expression in diploid and triploid hybrids between chum, chinook, and coho salmon. Aquaculture, 72(1-2): 31–48.
Seehausen O. 2004. Hybridization and adaptive radiation. Trends Ecol. Evol. 19(4): 198–207.
Seguin L.-R. 1957. Scientific fish culture in Quebec since 1945. Trans. Am. Fish. Soc. 86: 136–143.
Sutterlin A.M., MacFarlane L.R., and Harmon P. 1977. Growth and salinity tolerance in hybrids within Salmo sp. and Salvelinus sp. Aquaculture, 12: 41–52.
Suzuki R. and Fukunda Y. 1973. Sexual maturity of F1 hybrids among salmonid fishes. Bull. Freshw. Fish. Res. Lab. 23(2): 57–74.
Thorgaard G.H., Spruell P., Wheeler P.A., Scheerer P.D., Peek A.S., Valentine J.J., and Hilton B. 1995. Incidence of albinos as a monitor for induced triploidy in rainbow trout. Aquaculture, 137: 121–130.
Thorstad E.B., Fleming I.A., McGinnity P., Soto D., Wennevik V., and Whoriskey F. 2008. Incidence and impacts of escaped farmed Atlantic salmon Salmo salar in nature. Nor. Inst. Nat. Res. Spec. Rep. 36: 1–110.
VKM, Hindar, K., Hole, L.R., Kausrud, K., Malmstrøm, M., Rimstad, E., et al. 2020. Assessment of the risk to Norwegian biodiversity and aquaculture from pink salmon (Oncorhynchus gorbuscha). Scientific Opinion of the Panel on Alien Organisms and Trade in Endangered Species (CITES). VKM report 2020:01. Norwegian Scientific Committee for Food and Environment (VKM), Oslo, Norway.
Weir L.K., Hutchings J.A., Fleming I.A., and Einum S. 2005. Spawning behaviour and success of mature male Atlantic salmon (Salmo salar) parr of farmed and wild origin. Can. J. Fish. Aquat. Sci. 62(5): 1153–1160.

Supplementary Material

Supplementary data (cjfas-2021-0083suppla.docx)

Information & Authors

Information

Published In

cover image Canadian Journal of Fisheries and Aquatic Sciences
Canadian Journal of Fisheries and Aquatic Sciences
Volume 79Number 4April 2022
Pages: 670 - 676

History

Received: 9 April 2021
Accepted: 23 September 2021
Version of record online: 3 February 2022

Permissions

Request permissions for this article.

Authors

Affiliations

Robert H. Devlin [email protected]
Fisheries and Oceans Canada, 4160 Marine Drive, West Vancouver, BC V7V 1N6, Canada.
Carlo A. Biagi
Fisheries and Oceans Canada, 4160 Marine Drive, West Vancouver, BC V7V 1N6, Canada.
Dionne Sakhrani
Fisheries and Oceans Canada, 4160 Marine Drive, West Vancouver, BC V7V 1N6, Canada.
Takafumi Fujimoto
Faculty of Fisheries Sciences, Hokkaido University, 3-1-1, Minato, Hakodate, Hokkaido 041-8611, Japan.
Rosalind A. Leggatt
Fisheries and Oceans Canada, 4160 Marine Drive, West Vancouver, BC V7V 1N6, Canada.
Jack L. Smith
Fisheries and Oceans Canada, 4160 Marine Drive, West Vancouver, BC V7V 1N6, Canada.
Timothy Y. Yesaki
Fisheries and Oceans Canada, 4160 Marine Drive, West Vancouver, BC V7V 1N6, Canada.

Metrics & Citations

Metrics

Other Metrics

Citations

Cite As

Export Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

1. The Phenotype, Sex Ratio and Gonadal Development in Triploid Rainbow Trout (Oncorhynchus Mykiss) X Brook Trout (Salvelinus Fontinalis) Hybrids
2. Meiosis and gametogenesis in hybrid, polyploid, and clonal fishes: case studies in the dojo loach Misgurnus anguillicaudatus
3. Salmonidae Genome: Features, Evolutionary and Phylogenetic Characteristics

View Options

Login options

Check if you access through your login credentials or your institution to get full access on this article.

Subscribe

Click on the button below to subscribe to Canadian Journal of Fisheries and Aquatic Sciences

Purchase options

Purchase this article to get full access to it.

Restore your content access

Enter your email address to restore your content access:

Note: This functionality works only for purchases done as a guest. If you already have an account, log in to access the content to which you are entitled.

View options

PDF

View PDF

Full Text

View Full Text

Media

Media

Other

Tables

Share Options

Share

Share the article link

Share on social media