Yellow-cedar blue intensity tree-ring chronologies as records of climate in Juneau, Alaska, USA

Publication: Canadian Journal of Forest Research
5 September 2019

Abstract

This is the first study to generate and analyze the climate signal in blue intensity (BI) tree-ring chronologies from Alaska yellow-cedar (Callitropsis nootkatensis (D. Don) Oerst. ex D.P. Little). The latewood BI chronology shows a much stronger temperature sensitivity than ring width and can thus provide information on past climate. The well-replicated BI chronology exhibits a positive January–August mean maximum temperature signal for 1900–1975, after which it loses temperature sensitivity following the 1976–1977 shift in northeastern Pacific climate. The positive temperature response appears to recover and remains strong for the most recent decades, but the coming years will continue to test this observation. This temporary loss of temperature sensitivity from about 1976 to 1999 is not evident in ring width or in a change in forest health but is consistent with prior work linking cedar decline to warming. A confounding factor is the uncertain influence of a shift in color variation from the heartwood–sapwood boundary. Future expansion of the yellow-cedar BI network and further investigation of the influence of the heartwood–sapwood transitions in the BI signal will lead to a better understanding of the utility of this species as a climate proxy.

Résumé

Cette étude est la première à générer et analyser le signal climatique dans des séries dendrochronologiques construites à partir de l’intensité de la lumière bleue (IB) reflétée par les cernes annuels du faux-cyprès de Nootka (Callitropsis nootkatensis (D. Don) Oerst. ex D.P. Little). La chronologie IB reliée à la densité maximum du bois final est beaucoup plus sensible à la température que la largeur des cernes annuels et fournit par conséquent de l’information sur le climat passé. La chronologie IB bien répétée révèle un signal positif de la température maximum moyenne de janvier à août de 1900 à 1975, après quoi la sensibilité à la température disparaît à la suite du changement du climat dans le nord-est du Pacifique en 1976–1977. La réponse positive de la température semble se rétablir et demeure forte pour les plus récentes décennies mais cette observation devra subir l’épreuve du temps. Cette perte temporaire de sensibilité à la température de 1976 à 1999 environ n’est pas évidente dans la largeur des cernes annuels ni dans un changement dans l’état de santé de la forêt, mais elle correspond aux résultats de travaux antérieurs reliant le dépérissement du faux-cyprès au réchauffement. L’influence incertaine d’un changement dans la variation de la couleur à la limite entre le bois de cœur et le bois d’aubier est un facteur de confusion. L’expansion future du réseau IB du faux-cyprès de Nootka et la poursuite de l’étude de l’influence de la transition entre le bois d’aubier et le bois de cœur dans le signal IB mèneront à une meilleure compréhension de l’utilité de cette espèce comme indicateur indirect du climat. [Traduit par la Rédaction]

Get full access to this article

View all available purchase options and get full access to this article.

References

Barber V.A., Juday G.P., and Finney B.P. 2000. Reduced growth of Alaskan white spruce in the twentieth century from temperature-induced drought stress. Nature, 405: 668–673.
Barclay D.J., Wiles G.C., and Calkin P.E. 1999. A 1119-year tree-ring-width chronology from western Prince William Sound, southern Alaska. Holocene, 9: 79–84.
Barrett T.M. and Pattison R.R. 2017. No evidence of recent (1995–2013) decrease of yellow-cedar in Alaska. Can. J. For. Res. 47: 97–105.
Beier C.M., Sink S.E., Hennon P.E., D’Amore D.V., and Juday G.P. 2008. Twentieth-century warming and the dendroclimatology of declining yellow-cedar forests in southeastern Alaska. Can. J. For. Res. 38: 1319–1334.
Bidlack A., Bisbing S., Buma B., D’Amore D., Hennon P., Heutte T., et al. 2017. Alternative interpretation and scale-based context for “No evidence of recent (1995–2013) decrease of yellow-cedar in Alaska” (Barrett and Pattison 2017). Can. J. For. Res. 47: 1145–1151.
Björklund J., Gunnarson B.E., Seftigen K., Esper J., and Linderholm H.W. 2014. Blue intensity and density from northern Fennoscandian tree rings, exploring the potential to improve summer temperature reconstructions with earlywood information. Clim. Past, 10: 877–885.
Björklund J., Gunnarson B.E., Seftigen K., Zhang P., and Linderholm H.W. 2015. Using adjusted blue intensity data to attain high-quality summer temperature information: a case study from Central Scandinavia. Holocene, 25: 547–556.
Boulton C.A. and Lenton T.M. 2015. Slowing down of North Pacific climate variability and its implications for abrupt ecosystem change. Proc. Nat. Acad. Sci. 112: 11496–11501.
Buckley B.M., Hansen K.G., Griffin K.L., Schmiege S., Oelkers R., D’Arrigo R.D., et al. 2018. Blue intensity from a tropical conifer’s annual rings for climate reconstruction: an ecophysiological perspective. Dendrochronologia, 50: 10–22.
Buma B. 2018. Transitional climate mortality: slower warming may result in increased climate-induced mortality in some systems. Ecosphere, 9: e02170.
Buma B., Hennon P.E., Harrington C.A., Popkin J.R., Krapek J., Lamb M.S., et al. 2017. Emerging climate-driven disturbance processes: widespread mortality associated with snow-to-rain transitions across 10° of latitude and half the range of a climate-threatened conifer. Glob. Change Biol. 23: 2903–2914.
Campbell R., McCarroll D., Loader N.J., Grudd H., Robertson I., and Jalkanen R. 2007. Blue intensity in Pinus sylvestris tree-rings: developing a new palaeoclimate proxy. Holocene, 17: 821–828.
Charlton, J., Cruz, A., Lummus, M., Loadholt, K., Messerich, C., Wiles, G. et al. 2017. Yellow cedar growth response to decadal climatic shifts at Cedar Lake, Juneau, Alaska. Geol. Soc. Am. Abst. Progr. 49(6).
Cohen W.B., Yang Z., Stehman S.V., Schroeder T.A., Bell D.M., Masek J.G., et al. 2016. Forest disturbance across the conterminous United States from 1985–2012: the emerging dominance of forest decline. For. Ecol. Manage. 360: 242–252.
Cook, E.R. 1985. A time series analysis approach to tree-ring standardization. Ph.D. Thesis, University of Arizona, Tucson, Ariz.
D’Amore D.V., Hennon P.E., Schaberg P.G., and Hawley G.J. 2009. Adaptation to exploit nitrate in surface soils predisposes yellow-cedar to climate change-induced decline and enhances the survival of red cedar: a new hypothesis. For. Ecol. Manage. 258: 2261–2268.
D’Arrigo R., Villalba R., and Wiles G. 2001. Tree-ring estimates of Pacific decadal climate variability. Clim. Dyn. 18: 219–224.
D’Arrigo, R., Kaufmann, R.K., Davi, N., Jacoby, G.C., Laskowski, C., Myneni, R.B., and Cherubini, P. 2004. Thresholds for warming-induced growth decline at elevational tree line in the Yukon Territory, Canada. Glob. Biogeochem. Cycles, 18: GB3021.
D’Arrigo R., Wilson R., Liepert B., and Cherubini P. 2008. On the “divergence problem” in northern forests: a review of the tree-ring evidence and possible causes. Glob. Planet. Change, 60: 289–305.
Ding H., Greatbatch R.J., Latrif M., Park W., and Gerdes R. 2013. Hindcast of the 1976/77 and 1998/99 climate shifts in the Pacific. J. Clim. 26: 7650–7661.
Dolgova E. 2016. June–September temperature reconstruction in the Northern Caucasus based on blue intensity data. Dendrochronologia, 39: 17–23.
Ebbesmeyer, C.C., Cayan, D.R., Mclain, D.R., Nichols, F.H., Peterson, D.H., and Redmond, K.T. 1991. 1976 step in the Pacific climate: forty environmental changes between 1968–1975 and 1977–1984. In Proceedings of the 7th Annual Climate (PACLIM) Workshop, April 1990. Edited by J.L. Betancourt and V.L. Tharp. California Department of Water Resources, Interagency Ecological Studies Program Technical Report 26. pp. 115–126.
Fuentes M., Salo R., Björklund J., Seftigen K., Zhang P., Gunnarson B., Aravena J., and Linderholm H. 2018. A 970-year-long summer temperature reconstruction from Rogen, west-central Sweden, based on blue intensity from tree rings. Holocene, 28: 254–266.
Gaglioti, B.V., Mann, D.H., Williams, A.P., Wiles, G.C., and Jones, B. 2019. Sudden shifts in wintertime Aleutian Low variability revealed in a 550-year record of storm-damaged trees from Southeast Alaska. J. Geophys. Res. Biosci. In press.
Harris I., Jones P.D., Osborn T.J., and Lister D. 2014. Updated high-resolution grids of monthly climatic observations — the CRU TS3. 10 Dataset. Int. J. Clim. 34: 623–642.
Hartmann B. and Wendler G. 2005. The significance of the 1976 Pacific climate shift in the climatology of Alaska. J. Clim. 18: 4824–4839.
Hennon P.E. and Shaw C.G. III 1994. Did climatic warming trigger the onset and development of yellow-cedar decline in southeast Alaska? For. Pathol. 24: 399–418.
Hennon P.E., Shaw C.G., and Hansen E.M. 1990. Dating decline and mortality of Chamaecyparis nootkatensis in southeast Alaska. For. Sci. 36: 502–515.
Hennon P.E., D’Amore D., Wittwer D., Johnson A., Schaberg P., Hawley G., et al. 2006. Climate warming, reduced snow, and freezing injury could explain the demise of yellow-cedar in southeast Alaska, U.S.A. World Res. Rev. 18: 227–250.
Hennon P.E., D’Amore D.V., Schaberg P.G., Wittwer D.T., and Shanley C.S. 2012. Shifting climate, altered niche, and a dynamic conservation strategy for yellow-cedar in the North Pacific coastal rainforest. BioScience, 62: 147–158.
Hennon, P.E., McKenzie, C.M., D’Amore, D., Wittwer, D.T., Mulvey, R.L., Lamb, M.S. et al. 2016. A climate adaptation strategy for conservation and management of yellow-cedar in Alaska. USDA For. Serv. Gen. Tech. Rep. PNW-GTR-917. U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station, Portland, Ore.
Holmes R. 1983. Computer-assisted quality control in tree-ring dating and measurement. Tree-Ring Bull. 44: 69–74.
Jarvis, S.K., Wiles, G.C., Appleton, S.N., D’Arrigo, R.D., and Lawson, D.E. 2013. A warming-induced biome shift detected in tree growth of Mountain Hemlock (Tsuga mertensiana (Bong.) Carrière) along the Gulf of Alaska. Arct. Antarct. Alp. Res. 45.
Juday G.P. and Alix C. 2012. Consistent negative temperature sensitivity and positive influence of precipitation on growth of floodplain Picea glauca in interior Alaska. Can. J. For. Res. 42: 561–573.
Juday, G.P., Barber, V., Rupp, S., Zasada, J., and Wilmking, M. 2003. A 200-year perspective of climate variability and the response of white spruce in Interior Alaska. In Climate variability and ecosystem response at long-term ecological research sites. Edited by D. Greenland, D.G. Goodin, and R.C. Smith. Oxford University Press, New York. pp. 226–250.
Krapek J. and Buma B. 2017. Persistence following punctuated range extension: limited dispersal of migrating tree despite habitat ahead of its range. J. Ecol. 106: 911–924.
Krapek J., Hennon P.E., D’Amore D.V., and Buma B. 2017. Despite available habitat at range edge, yellow-cedar migration is punctuated with a past pulse tied to colder conditions. Divers. Distrib. 23: 1381–1392.
Larsson, L.-Å. 2016. CDendro and CooRecorder program package for tree ring measurements and crossdating of the data, version 8.1.1 [online]. Cybis Eletronik & Data AB, Saltsjöbaden, Sweden. Available from http://www.cybis.se/forfun/dendro.
Manion, P.D., and Lachance, D. (Editors). 1992. Forest decline concepts. APS Press, St. Paul, Minn.
Mantua N.J., Hare S.R., Zhang Y., Wallace J.M., and Francis R.C. 1997. A Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Am. Meteor. Soc. 78: 1069–1079.
McAfee S.A. 2014. Consistency and the lack thereof in Pacific decadal oscillation impacts on North American winter climate. J. Clim. 27: 7410–7431.
McAfee S.A. 2016. Uncertainty in Pacific decadal oscillation indices does not contribute to teleconnection instability. Int. J. Climatol. 37: 3509–3516.
McCarroll D., Pettigrew E., Luckman A., Guibal F., and Edouard J.L. 2002. Blue reflectance provides a surrogate for latewood density of high-latitude pine tree rings. Arct. Ant. Alp. Res. 34: 450–453.
Melvin T.M., and Briffa K.R. 2008. A “signal-free” approach to dendroclimatic standardisation. Dendrochronologia, 26: 71–86.
Melvin T.M. and Briffa K.R. 2014. CRUST: software for the implementation of Regional Chronology Standardisation: Part 2. Further RCS options and recommendations. Dendrochronologia, 32: 343–356.
Melvin T.M., Briffa K.R., Nicolussi K., and Grabner M. 2007. Time-varying-response smoothing. Dendrochronologia, 25: 65–69.
Newman M., Alexander M.A., Ault T.R., Cobb K.M., Deser C., Di Lorenzo E., et al. 2016. The Pacific decadal oscillation, revisited. J. Clim. 29: 4399–4427.
Oakes, L.E. 2018. In search of the canary tree: the story of a scientist, a cypress, and a changing world. Hachette Book Group, New York.
Oakes L.E., Hennon P.E., O’Hara K.L., O’Hara K.L., and Dirzo R. 2014. Long-term vegetation changes in a temperate forest impacted by climate change. Ecosphere, 5: 1–28.
Oakes L.E., Hennon P.E., Ardoin N.M., D’Amore D., Feruson A.J., Steel E.A., et al. 2015. Conservation in a social–ecological system experiencing climate-induced tree mortality. Biol. Conserv. 192: 276–285.
Ohse B., Jansen F., and Wilmking M. 2012. Do limiting factors at Alaskan treelines shift with climatic regimes? Environ. Res. Lett. 7: 1–12.
Overland J., Rodionov S., Minobe S., and Bond N. 2008. North Pacific regime shifts: definitions, issues and recent transitions. Prog. Oeanogr. 77: 92–102.
Rydval M., Larsson L-Å., McGlynn L., Gunnarson B.E., Loader N.J., Young G.H.F., and Wilson R. 2014. Blue intensity for dendroclimatology: should we have the blues? Experiments from Scotland. Dendrochronologia, 32: 191–204.
Rydval M., Loader N.J., Gunnarson B.E., Druckenbroad D.L., Linderholm H.W., Moreton S.G., et al. 2017. Reconstructing 800 years of summer temperatures in Scotland from tree rings. Clim. Dyn. 49: 29–51.
Schaberg P.G., Hennon P.E., D’Amore D., Hennon P.E., Halman J.M., and Hawley G.J. 2008. Influence of simulated snow cover on the cold tolerance and freezing injury of yellow-cedar seedlings. Glob. Change Biol. 14: 1282–1293.
Schaberg P.G., D’Amore D.V., Hennon P.E., Halman J.M., and Hawley G.J. 2011. Do limited cold tolerance and shallow depth of roots contribute to yellow-cedar decline? For. Ecol. Manage. 262: 2142–2150.
Sullivan P.F., Pattison R.R., Brownlee A.H., Cahoon S.M.P., and Hollingsworth T.N. 2017. Limited evidence of declining growth among moisture-limited black and white spruce in interior Alaska. Sci. Rep. 7: 15344.
Trenberth K.E. and Hurrell J.W. 1994. Decadal atmosphere–ocean variations in the Pacific. Clim. Dyn. 9: 303–319.
Wang X., Li Z., and Ma K. 2014. Decreased sensitivity of tree growth to temperature in southeast China after the 1976/’77 regime shift in Pacific climate. Sains Malaysiana, 43: 9–19.
Wendler G., Gordon T., and Stuefer M. 2017. On the precipitation and precipitation change in Alaska. Atmosphere, 8: 253.
Wigley T.M., Briffa K.R., and Jones P.D. 1984. On the average value of correlated time series, with applications in dendroclimatology and hydrometeorology. J. Clim. Appl. Meteorol. 23: 201–213.
Wiles G.C., Mennett C.R., Jarvis S.K., D’Arrigo R.D., Wiesenberg N., and Lawson D. 2012. Tree-ring investigations into changing climatic responses of yellow-cedar, Glacier Bay, Alaska. Can. J. For. Res. 42: 814–819.
Wiles G.C., D’Arrigo R.D., Barclay D., Wilson R.S., Javis S.K., Vargo L., and Frank D. 2014. Surface air temperature variability reconstructed with tree rings for the Gulf of Alaska over the past 1200 years. Holocene, 24: 198–208.
Wills R.C., Schneider T., Wallace J.M., Battisti D.S., and Hartman D.L. 2018. Disentangling global warming, multidecadal variability, and El Niño in Pacific temperatures. Geophys. Res. Lett. 45: 2487–2496.
Wilson R., Wiles G., D’Arrigo R., and Zweck C. 2007. Cycles and shifts: 1300 years of multidecadal temperature variability in the Gulf of Alaska. Clim. Dyn. 28: 425–440.
Wilson R., Rao R., Rydval M., Wood C., Larsson L.A., and Luckman B.H. 2014. Blue intensity for dendroclimatology: the BC blues: a case study from British Columbia, Canada. Holocene, 24: 1428–1438.
Wilson R., D’Arrigo R., Andrew-Hayles L., Oelkers R., Wiles G., Anchukaitis K., and Davi N. 2017. High-sensitivity warm-season climate signatures in a Gulf of Alaska blue light intensity tree-ring composite record. Clim. Past, 13: 1851–1900.
Wilson R., Anchukaitis K., Andreu-Hayles L., Cook E., D’Arrigo R., Davi N., et al. 2019. Improved dendroclimatic calibration using blue intensity in the southern Yukon. Holocene, 29: 1817–1830.
Wright, M., Sherriff, R.L., Miller, A.E., and Wilson, T. 2018. Stand basal area and temperature interact to influence growth in white spruce in southwest Alaska. Ecosphere, 9.

Information & Authors

Information

Published In

cover image Canadian Journal of Forest Research
Canadian Journal of Forest Research
Volume 49Number 12December 2019
Pages: 1483 - 1492

History

Received: 10 December 2018
Accepted: 18 August 2019
Published online: 5 September 2019

Permissions

Request permissions for this article.

Key Words

  1. yellow-cedar
  2. blue intensity
  3. tree rings
  4. dendroclimatology
  5. Alaska

Mots-clés

  1. faux-cyprès de Nootka
  2. intensité de la lumière bleue
  3. cernes annuels
  4. dendroclimatologie
  5. Alaska

Authors

Affiliations

Gregory C. Wiles gwiles@wooster.edu
Department of Earth Sciences, The College of Wooster, Wooster, OH 44691, USA.
Tree-Ring Lab, Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY 10964, USA.
Joshua Charlton
Department of Earth Sciences, The College of Wooster, Wooster, OH 44691, USA.
Rob J.S. Wilson
Tree-Ring Lab, Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY 10964, USA.
School of Earth and Environmental Sciences, University of St. Andrews, St. Andrews KY16 9AL, Scotland, UK.
Rosanne D. D’Arrigo
Tree-Ring Lab, Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY 10964, USA.
Brian Buma
Department of Integrative Biology, University of Colorado Denver, Denver, CO 80204, USA.
John Krapek
Department of Natural Sciences, University of Alaska Southeast, Juneau, AK 99801, USA.
Benjamin V. Gaglioti
Tree-Ring Lab, Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY 10964, USA.
Water and Environmental Research Center, Institute of Northern Engineering, University of Alaska Fairbanks, Fairbanks, AK 99775, USA.
Nicholas Wiesenberg
Department of Earth Sciences, The College of Wooster, Wooster, OH 44691, USA.
Rose Oelkers
Tree-Ring Lab, Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY 10964, USA.

Notes

Copyright remains with the author(s) or their institution(s). Permission for reuse (free in most cases) can be obtained from RightsLink.

Metrics & Citations

Metrics

Other Metrics

Citations

Cite As

Export Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

1. Multiple divergent patterns in yellow-cedar growth driven by anthropogenic climate change
2. I-BIND: International Blue intensity network development working group
3. Wood Products for Cultural Uses: Sustaining Native Resilience and Vital Lifeways in Southeast Alaska, USA
4. Evaluating the dendroclimatological potential of blue intensity on multiple conifer species from Tasmania and New Zealand
5. Microdensitometric records from humid subtropical China show distinct climate signals in earlywood and latewood
6. Temperature sensitivity of blue intensity, maximum latewood density, and ring width data of living black spruce trees in the eastern Canadian taiga
7. Towards broad‐scale temperature reconstructions for Eastern North America using blue light intensity from tree rings
8. Late summer temperature variability for the Southern Rocky Mountains (USA) since 1735 CE: applying blue light intensity to low-latitude Picea engelmannii Parry ex Engelm
9. Delta blue intensity vs. maximum density: A case study using Pinus uncinata in the Pyrenees
10. Tree-Rings Reveal Accelerated Yellow-Cedar Decline with Changes to Winter Climate after 1980

View Options

Get Access

Login options

Check if you access through your login credentials or your institution to get full access on this article.

Subscribe

Click on the button below to subscribe to Canadian Journal of Forest Research

Purchase options

Purchase this article to get full access to it.

Restore your content access

Enter your email address to restore your content access:

Note: This functionality works only for purchases done as a guest. If you already have an account, log in to access the content to which you are entitled.

View options

PDF

View PDF

Full Text

View Full Text

Media

Media

Other

Tables

Share Options

Share

Share the article link

Share with email

Email a colleague

Share on social media