Cookies Notification

We use cookies to improve your website experience. To learn about our use of cookies and how you can manage your cookie settings, please see our Cookie Policy.
×

Influence of treatment with quercetin on lipid parameters and oxidative stress of pregnant diabetic rats

Publication: Canadian Journal of Physiology and Pharmacology
25 February 2013

Abstract

Among the numerous coadjuvant therapies that could influence the incidence and progression of diabetic complications, antioxidants and flavonoids are currently being tested in clinical trials. We investigated the effect of quercetin on biochemical parameters in streptozotocin-induced (60 mg/kg body mass, by intraperitoneal injection) diabetic rats. A total of 32 female Wistar rats were distributed among 4 groups as follows: control (G1); control treated with quercetin (G2); diabetic (G3); and diabetic treated with quercetin (G4). Quercetin administered to pregnant diabetic rats controlled dyslipidemia and improved lipid profiles in diabetes mellitus, regulated oxidative stress by reducing the generation of lipid hydroperoxides, and increased the activity of the antioxidant enzyme glutathione peroxidase.

Résumé

Parmi les nombreuses thérapies co-adjuvantes qui pourraient influencer l'incidence et la progression des complications diabétiques, les antioxydants et les flavonoïdes sont actuellement étudiés dans des essais cliniques. Nous avons examiné l'effet de la quercétine sur les paramètres biochimiques de rats rendus diabétiques par la streptozotocine (60 mg/kg, i.p.). Trente-deux rats Wistar femelles ont été distribués en quatre groupes : contrôle (G1) ; contrôle traité à la quercétine (G2) ; diabétique (G3) et diabétique traité à la quercétine (G4). La quercétine administrée à des rates gestantes diabétiques contrôlait la dyslipidémie et améliorait le profil lipidique du diabète sucré, régulait le stress oxydant en réduisant la génération d'hydroperoxydes lipidiques et augmentait l'activité de l'enzyme anti-oxydante GSH-Px.

Get full access to this article

View all available purchase options and get full access to this article.

References

Aguirre L., Arias N., Macarulla M.T., Gracia A., and Portillo M.P. 2011. Beneficial effects of quercetin on obesity and diabetes. Open Nutraceuticals J. 4: 189–198.
Albert K.G. and Zimmet P.Z. 1998. Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and complications of diabetes mellitus, provisional report of a WHO consultation. Diabet. Med. 15: 539–553.
Amaral S., Oliveira P.J., and Ramalho-Santos J. 2008. Diabetes and the impairment of reproductive function: possible role of mitochondria and reactive oxygen species. Curr. Diabetes Rev. 4: 46–54.
Anjaneyulu M. and Chopra K. 2004. Quercetin, an anti-oxidant bioflavonoid, attenuates diabetic nephropathy in rats. Clin. Exp. Pharmacol. Physiol. 31: 244–248.
Arduino, F. 1980. Sintomas, diagnóstico, prognóstico e mortalidade da diabetes. In Diabetes mellitus. 3rd Ed. Guanabara Koogan, Rio de Janeiro, Brazil. pp. 78–94.
Bhutada P., Mundhada Y., Bansod K., Bhutada C., Tawari S., Dixit P., et al. 2010. Ameliorative effect of quercetin on memory dysfunction in streptozotocin-induced diabetic rats. Neurobiol. Learn. Mem. 94: 293–302.
Bischoff S.C. 2008. Quercetin: potentials in the prevention and therapy of disease. Curr. Opin Clin. Nutr. Metab. Care, 11: 733–740.
Bona, S. 2010. Proteção antioxidante da quercetina em fígado de ratos cirróticos. Dissertação (Mestrado) – Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
Brownlee M. 2005. The pathobiology of diabetic complications: a unifying mechanism. Diabetes, 54: 1615–1625.
Buchanan T.A., Denno K.M., Sipos G.F., and Sadler T.W. 1994. Diabetic teratogenesis. In vitro evidence for multifactorial etiology with little contribution from glucose per se. Diabetes, 43: 656–660.
Calderon I.M.P., Rudge M.V.C., Brasil M.A.M., and Henry M.A.C.A. 1992. Diabete e gravidez experimental em ratas I. Indução do diabete, obtenção e evolução da prenhez. Circul. Bras. 7: 1–4.
Cardoso L.M., Oliveira T.T., Pinto A.S., Chaves A.R.M., Leão M.A., Costa M.R., et al. 2011. Efeito das tinturas de café torrado e moído nos níveis séricos de colesterol, triglicerídeos e glicose em ratos diabéticos. Rev. Ciênc. Farm. Básica Apl. 32: 77–81.
Cazarolli L.H., Zanatta L., Alberton E.H., Reis B.F.M.S., Folador P., Damazio R.G., et al. 2008. Flavonoids: Cellular and molecular mechanism of action glucose homeostasis. Mini Rev. Med. Chem. 8: 1032–1038.
Corosu R., Onorati E., and Bielli W. 2002. Diabetes mellitus and fetal malformations: a review of the literature. Italian J. Gynaecol. Obstetric. 14: 23–26.
Cosentino F.K., Hishikawa K., Katusic Z.S., and Luscher T.F. 1997. High glucose increases nitric oxide synthase expression and superoxide anion generation in human aortic endothelial cells. Circulation, 96: 25–28.
Coskun O., Kanter M., Korkmaz A., and Oter S. 2005. Quercetin, a flavonoid antioxidant, prevents and protects streptozotocin-induced oxidative stress and beta-cell damage in rat pancreas. Pharm. Res. 51: 117–123.
Costacou T.M.A., King I.B., and Mayer-Davis E.J. 2008. Plasma and dietary vitamin E in ration to insulin secretion and sensitivity. Diabetes Obes. Metab. 10: 223–228.
Crouch R.K., Gandy S.C., and Kisey G. 1981. The inhibition of islet superoxide dismutase by diabetogenic drugs. Diabetes, 30: 235–241.
Cunha J.M., Funez M.I., Cunha F.Q., Parada C.A., and Ferreira S.H. 2009. Streptozotocin-induced mechanical hypernociception is not dependent on hyperglycemia. Braz. J. Med. Biol. Res. 42: 197–206.
Degáspari C.H. and Waszczynskyj N. 2004. Propriedades antioxidantes de compostos fenólicos. Visão Acad. 5: 33–40.
Devlin, T.M. 2007. Manual de bioquímica com correlações clínicas. 6th Ed. Blücher, São Paulo, Brazil.
Dias A.S., Porawski M., Alonso M., Marroni N., Collado P.S., and González-Gallego J. 2005. Quercetin decreases oxidative stress, NF-kappaB activation, and iNOS overexpression in liver of streptozotocin-induced diabetic rats. J. Nutr. 135: 2299–2304.
Dornas W.C., Oliveira T.T., Rodrigues-das Dores R.G., Santos A.F., and Nagem T.J. 2007. Flavonóides: potencial terapêutico no estresse oxidativo. Rev. Ciênc. Farm. Básica Apl. 28: 241–219.
Evelson P., Susemihl C., Villarreal I., Llesuy S., Rodríguez R., and Peredo H. 2005. Hepatic morphological changes and oxidative stress in chronic streptozotocin-diabetes rats. Ann. Hepatol. 4: 115–120.
Evers I.M., Valk H.W., and Visser G.H.A 2004. Risk of complications of pregnancy in woman type 1 diabetes: nationwide prospective study in the Netherlands. BMJ, 1: 1–5.
Fakher S.H., Djalali M., Tabei S.M.B., Zeraati H., Javadi E., Sadeghi M.R., et al. 2007. Effect of vitamins A, E, C and Omega-3 fatty acids on lipid peroxidation in streptozotocin induced diabetes rats. Iran J. Public Health, 36: 58–63.
Fernandes A.A.H., Novelli E.L.B., and Galhardi C.M. 2009. Effect of naringerin on biochemical parameters in the streptozotocin-induced diabetic rats. Braz. Arc. Biol. Technol. 52: 51–59.
Fernandes A.A.H., Novelli E.L.B., Okoshi K., Okoshi M.P., Muzio B.P.D., Guimarães J.F.C., et al. 2010. Influence of rutin treatment on biochemical alterations in experimental diabetes. Biomed. Pharmacother. 64: 214–219.
Freinkel N., Cokroft D.L., Lewis N.J., Gorman L., Akazawa P., and Shambaugh L.S. 1986. The 1986 McCollum award lecture. Fuel-mediated teratogenesis during early organogenesis: the effects of increased concentrations of glucose, ketones, or somatomedin inhibitor during rat embryo culture. Am. J. Clin. Nutr. 44: 986–995.
Friedewald W.T., Levy R.I., and Fredrickson D.S. 1972. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin. Chem. 18: 499–502.
Genest J., Marcil M., Denis M., and Yu L. 1999. High density lipoproteins in health and in disease. J. Investig. Med. 47: 31–42.
Gleisner A., Martinez L., Pino R., Rojas I.G., Martinez A., Asenjo S., et al. 2006. Oxidative stress markers in plasma and urine of prepubertal patients with type 1 diabetes mellitus. J. Pediatr. Endocrinol. Metab. 19: 995–1000.
Golbert A. and Campos M.A.A., 2008. Diabetes Melito Tipo 1 e Gestação. Arq. Bras. Endrocrinol. Metab. 52: 2.
Gregory S. and Kelly N.D. 2011. Quercetin. Altern. Med. Rev. 16: 172–194.
Instituto Brasileiro de Geografia e Estatística (IBGE). 2010. POF: Pesquisa de orçamentos mamiliares 2008–2009. Aquisição alimentar domiciliar per capita, Rio de Janeiro, Brazil.
Jeon S.M., Him H.K., Him H.J., Do G.M., Jeon T.S., Park Y.B., et al. 2007. Hypocholesterolemic and antioxidative effects of naringerin and its two metabolities in high-cholesterol fed rats. Transl. Res. 149: 15–21.
Jiang Z.Y., Woolard A.C.S., and Wolf S.P. 1991. Lipid hydroperoxidaes measurement by oxidation of Fe2+ in the of xylenol orange. Lipids, 24: 861–869.
Johansen J.S., Harris A.K., Rychly D.J., and Ergul A. 2005. Oxidative stress and the use of antioxidants in diabetes: linking basic science to clinical practice. Cardiovasc. Diabetol. 4: 1–11.
Karakilcik A.Z., Zerin M., Arslan O., Nazligul Y., and Vural H. 2004 Effects of vitamin C and E on liver enzymes and biochemical parameters of rabbits exposed to aflatoxin B1. Vet. Hum. Toxicol. 46: 190–192.
Kataoka S., Satoh J., Fujiya H., Toyota T., Suzuki R., Itoh K., et al. 1983. Immunologic aspects of the nonobese diabetic (NOD) mouse. Abnormalities of cellular immunity. Diabetes, 32: 247–253.
Khahi A., Fathiazad E., and Nouri M. 2010. Beneficial effects of quercetin on sperm parameters in streptozotocin-induced diabetic male rats. Phytother. Res. 24: 1285–1289.
Khera A. and Mcguire D.K. 2005. Management of diabetic dyslipidemia: need for reappraisal of the goals. Am. J. Cardiovasc. Drugs, 2: 83–91.
Koo J.R., Oviesi F., and Vaziri N.D. 2001. Antioxidant therapy potentiates antihypertensive action of insulin in diabetic rats. Am. J. Hypertens. 14: 25–28.
Kumar G., Murugesan A.G., and Rajasekara-Pandian M. 2006. Effect of Helicteres isora bark extract on blood glucose and hepatic enzymes in experimental diabetes. Pharmazie, 61: 353–355.
Lee E.Y., Lee M.Y., Hone S.W., Chung C.H., and Hong S.Y. 2007. Blockade of oxidative stress by vitamin C ameliorates albuminuria and renal sclerosis in experimental rats. Yonsei Med. J. 48: 847–855.
Liu R.H. 2004. Potential synergy, of phytochemicals in cancer prevention: mechanism of action. J. Nutr. 134: 4795–4855.
Lopes-Virella M.F., Stone P., and Ellis S. 1977. Cholesterol determination in high-density lipoproteins separated by different methods. Clin. Chem. 13: 882–884.
Magon N. and Chauhan M. 2012. Pregnancy in type 1 diabetes mellitus: how special are special issues? N. Am. J. Med. Sci. 4: 250–256.
Marcondes F.K., Bianchi F.J., and Tanno A.P. 2002. Determination of the estrous cycle phases of rats: some helpful considerations. Braz. J. Biol. 62: 609–614.
Matheus A.S.M., Cobas R.A., and Gomes M.B. 2008. Dislipidemias no diabetes melito tipo 1: abordagem atual. Arq. Bras. Endocrinol. Metab. 52: 334–426.
Moura, R.A. 1982. Técnicas de Laboratório. Atheneu, Brazil.
Nagem T.J. 2001. Kaempherol e antocianina: redutores de lipídeos em ratos. Rev. Port. Farm. 3: 127–131.
Nakamura M., Hojoda S., and Hayashi K. 1974. Purification and properties of rats liver glutatione peroxidaes. Biochim. Biophys. Acta, 358: 251–261.
Orsolic N. 2011. DNA-protective effectts of quercetin or narigerin in alloxan-induced diabetic mice. Eur. J. Pharmacol. 656: 110–118.
Sanchez-Vera I. 2007. Changes in plasma lipids and increased low-density lipoprotein susceptibility to oxidation in pregnancies complicated by gestational diabetes: consequences of obesity. Metabolism, 56: 1527–1533.
Sanders R.A., Rauscher F.M., and Watkins J.B. 2001. Effects quercetin on antioxidant defense in streptozotocin-induced diabect rats. J. Biochem. Toxicol. 15: 143–149.
Santos H.B., Modesto-Filho J., Diniz M.F.F.M., Vasconcelos T.H.C., Pereira F.S.B., Ramalho J.A., et al. 2008. Avaliação do efeito hipoglicemiante de Cissus sicyoides em estudos clínicos fase II. Rev. Bras. Farmacogn. 18: 70–76.
Sarkhail P., Rahmanipour S., Fadyevatan S., Mohammadirad A., Dehghan G., Amin G., et al. 2007. Antidiabetic effect of Phlomis anisodonta: effects on hepatic cells lipid peroxidation and antioxidants enzymes in experimental diabetes. Pharmacol. Res. 56: 261–266.
Schneider M.B., Umkpierrez G.E., Ramsey R.D., Mabie W.C., and Bennett K.A. 2003. Pregnancy complicaded by diabetic ketoacidosis, maternal and fetal outcomes. Diabetes Care, 26: 958–959.
Shamir A., Kassis H., Kaplan M., Naveh T., and Shehadeh N. 2007. Glycemic control in adolescents with type I diabetes mellitus improves lipid serum levels and oxidative stress. Pediatr. Diabetes, 9: 104–109.
Shukla N., Rossoni G., Hotston M., Sparatore A., Del Soldato P., Tazzari V., et al. 2009. Effect of hydrogen sulphide-donating sildenafil (ACS6) on erectile function and oxidative stress in rabbit isolated corpus cavernosum and in hypertensive rats. BJU Int. 103: 1522–1529.
Silva M., Lima W.G., Silva M.E., and Pedrosa M.L. 2011. Effect of streptozotocin on the glycemic and lipid profiles and oxidative stress in hamsters. Arq. Bras. Endocrinol. Metab. 55: 1–8.
Sinzato Y.K., Lima P.H.O., Santos C.E.M., Campos K.E., Rudge M.V.C., and Damasceno D.C. 2008. Association of diabetes and cigarette smoke exposure on the glycemia and liver glycogen of pregnant Wistar rats. Acta Cirur. Bras. 23: 481.
Soloni F.G. 1971. Simplified manual micromethod for determination of serum triglycerides. Clin. Chem. 17:531–534.
Tabatabaei S.R.F., Papahn A.A., Jalali M.R., and Rahimi L. 2008. The effects of oral vitamin E on induction and consequence of experimental diabetes mellitus in rats. Pak. J. Biol. Sci. 11: 633–637.
Tieppo J., Cuevas M.J., Vercelino R., Tunon M.J., Marroni N.P., and Gonzalez-Gallego J. 2009. Quercetin administration ameliorates pulmonary complications of cirrhosis in rats. J. Nutr. 139: 1339–1346.
Trinder P. 1969. Enzymatic determination of blood glucose. Ann. Clin. Biochem. 6: 24–26.
Valastyan S., Takur V., Johson A., Kumar K., and Manor D. 2008. Novel transcriptional activities of vitamin E: inhibition of cholesterol biosynthesis. Biochemistry, 47: 744–752.
Voet, D., and Voet, J.G. 1995. Biochemistry. 2nd Ed. John Wiley & Sons, Inc., New York, N.Y.
Youl E., Bardy G., Margous M., Gros G., Sejalon F., Virsolvy A., et al. 2010. Quercetin potentates insulin secretion protects INS-1 pancreatic beta-cell against oxidative damage via the ERK1/2 pathway. Br. J. Pharmacol. 16: 799–814.
Zar, J.H. 1996. Bioestatistical analysis, 4th ed. Prentice Hall, New Jersey.
Ziegler D., Sohr C.G.H., and Nourooz-Zadeh J. 2004. Oxidative stress and antioxidant defense in relation to the severity of diabetic polyneuropathy and cardiovascular autonomic neuropathy. Diabetes Care, 27: 2178–2183.

Information & Authors

Information

Published In

cover image Canadian Journal of Physiology and Pharmacology
Canadian Journal of Physiology and Pharmacology
Volume 91Number 2February 2013
Pages: 171 - 177

History

Received: 26 May 2012
Accepted: 17 October 2012
Accepted manuscript online: 15 November 2012
Version of record online: 25 February 2013

Permissions

Request permissions for this article.

Key Words

  1. diabetes mellitus
  2. lipid profile
  3. oxidative stress
  4. pregnancy
  5. quercetin

Mots-clés

  1. diabète sucré
  2. profil lipidique
  3. stress oxydant
  4. gestation
  5. quercétine

Authors

Affiliations

Camila Pereira Braga
Departamento de Química e Bioquímica, Instituto de Biociências, Campus de Botucatu, Universidade Estadual Paulista “Júlio de Mesquita Filho”, UNESP, 18618-970, Botucatu, São Paulo, Brazil.
Ana Carolina Momentti
Departamento de Química e Bioquímica, Instituto de Biociências, Campus de Botucatu, Universidade Estadual Paulista “Júlio de Mesquita Filho”, UNESP, 18618-970, Botucatu, São Paulo, Brazil.
Fernando Barbosa Peixoto
Departamento de Química e Bioquímica, Instituto de Biociências, Campus de Botucatu, Universidade Estadual Paulista “Júlio de Mesquita Filho”, UNESP, 18618-970, Botucatu, São Paulo, Brazil.
Rafaela de Fátima Ferreira Baptista
Departamento de Farmacologia, Instituto de Biociências, Campus de Botucatu, Universidade Estadual Paulista “Júlio de Mesquita Filho”, UNESP, 18618-970, Botucatu, São Paulo, Brazil.
Felipe André dos Santos
Departamento de Química e Bioquímica, Instituto de Biociências, Campus de Botucatu, Universidade Estadual Paulista “Júlio de Mesquita Filho”, UNESP, 18618-970, Botucatu, São Paulo, Brazil.
Fábio Henrique Fava
Departamento de Química e Bioquímica, Instituto de Biociências, Campus de Botucatu, Universidade Estadual Paulista “Júlio de Mesquita Filho”, UNESP, 18618-970, Botucatu, São Paulo, Brazil.
Ana Angélica Henrique Fernandes
Departamento de Química e Bioquímica, Instituto de Biociências, Campus de Botucatu, Universidade Estadual Paulista “Júlio de Mesquita Filho”, UNESP, 18618-970, Botucatu, São Paulo, Brazil.

Metrics & Citations

Metrics

Other Metrics

Citations

Cite As

Export Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

1. Antihypertensive effect and mechanism of the traditional recipe of medicine food homology (Buyang Huanwu Decoction) in China: Meta analysis and network pharmacological exploration
2. Pitaya (Hylocereus lemairei) extracts avoid mitochondrial dysfunction and NF-kβ/NLRP-3-mediated inflammation in endothelial cells under high glucose and are in vivo safe
3. Cytokine profile and cholesterol levels in patients with Niemann-Pick type C disease presenting neurological symptoms: in vivo effect of miglustat and in vitro effect of N-acetylcysteine and coenzyme Q10
4. Nutritional Composition and Bioactive Compounds in Tomatoes and Their Impact on Human Health and Disease: A Review
5. Polyphenols in Farm Animals: Source of Reproductive Gain or Waste?
6. Quercetin prevents alterations of behavioral parameters, delta‐aminolevulinic dehydratase activity, and oxidative damage in brain of rats in a prenatal model of autism
7. Determination of process parameters and bioactive properties of the murici pulp (Byrsonima crassifolia) extracts obtained by supercritical extraction
8. Antidiabetic effect of quercetin: A systematic review and meta-analysis of animal studies
9. In vitro and in vivo evidence that quercetin protects against diabetes and its complications: A systematic review of the literature
10. Intermediate filament protein expression pattern and inflammatory response changes in kidneys of rats receiving doxorubicin chemotherapy and quercetin
11. Protective effects of quercetin treatment in a pristane-induced mouse model of lupus nephritis
12. Possible Benefits and Risks of Polyphenols Supplementation During Pregnancy
13. Effect of N-Acetylcysteine on Dyslipidemia and Carbohydrate Metabolism in STZ-Induced Diabetic Rats
14. Yacon ( Smallanthus sonchifolius ) Leaf Extract Attenuates Hyperglycemia and Skeletal Muscle Oxidative Stress and Inflammation in Diabetic Rats
15. The protective effects of oral low-dose quercetin on diabetic nephropathy in hypercholesterolemic mice
16. Renoprotective, anti-oxidative and anti-apoptotic effects of oral low-dose quercetin in the C57BL/6J model of diabetic nephropathy
17. Effect of Evolvulus alsinoides on lipid metabolism of streptozotocin induced diabetic rats

View Options

Get Access

Login options

Check if you access through your login credentials or your institution to get full access on this article.

Subscribe

Click on the button below to subscribe to Canadian Journal of Physiology and Pharmacology

Purchase options

Purchase this article to get full access to it.

Restore your content access

Enter your email address to restore your content access:

Note: This functionality works only for purchases done as a guest. If you already have an account, log in to access the content to which you are entitled.

View options

PDF

View PDF

Full Text

View Full Text

Media

Media

Other

Tables

Share Options

Share

Share the article link

Share on social media