Cookies Notification

We use cookies to improve your website experience. To learn about our use of cookies and how you can manage your cookie settings, please see our Cookie Policy.
×

The regulation of sarco(endo)plasmic reticulum calcium-ATPases (SERCA)

Publication: Canadian Journal of Physiology and Pharmacology
19 January 2015

Abstract

The sarco(endo)plasmic reticulum calcium ATPase (SERCA) is responsible for transporting calcium (Ca2+) from the cytosol into the lumen of the sarcoplasmic reticulum (SR) following muscular contraction. The Ca2+ sequestering activity of SERCA facilitates muscular relaxation in both cardiac and skeletal muscle. There are more than 10 distinct isoforms of SERCA expressed in different tissues. SERCA2a is the primary isoform expressed in cardiac tissue, whereas SERCA1a is the predominant isoform expressed in fast-twitch skeletal muscle. The Ca2+ sequestering activity of SERCA is regulated at the level of protein content and is further modified by the endogenous proteins phospholamban (PLN) and sarcolipin (SLN). Additionally, several novel mechanisms, including post-translational modifications and microRNAs (miRNAs) are emerging as integral regulators of Ca2+ transport activity. These regulatory mechanisms are clinically relevant, as dysregulated SERCA function has been implicated in the pathology of several disease states, including heart failure. Currently, several clinical trials are underway that utilize novel therapeutic approaches to restore SERCA2a activity in humans. The purpose of this review is to examine the regulatory mechanisms of the SERCA pump, with a particular emphasis on the influence of exercise in preventing the pathological conditions associated with impaired SERCA function.

Résumé

L’ATPase SERCA (« sarco(endoplasmic) reticulum calcium ATPase ») est responsable du transport du calcium (Ca2+) du cytosol à la lumière du réticulum sarcoplasmique (RS) à la suite de la contraction musculaire. L’activité de séquestration de Ca2+ de SERCA facilite la relaxation musculaire tant dans le muscle cardiaque que dans le muscle squelettique. Il existe plus de 10 formes distinctes de SERCA exprimées dans différents tissus. SERCA2a est la principale isoforme exprimée dans le tissu cardiaque alors que SERCA1a est l’isoforme prédominante du muscle squelettique à contraction rapide. L’activité de séquestration de Ca2+ de SERCA est régulée au niveau du contenu en protéine, et elle est modifiée en plus par deux protéines endogènes, le phospholamban (PLN) et la sarcolipine (SLN). En outre, plusieurs mécanismes nouveaux, dont les modifications post-traductionnelles et les microARN (miARN) émergent maintenant en tant que régulateurs intégraux de l’activité de transport du Ca2+. Ces mécanismes régulateurs sont pertinents sur le plan clinique, car la dérégulation de la fonction de SERCA a été impliquée dans plusieurs pathologies incluant l’insuffisance cardiaque. Actuellement, plusieurs essais cliniques en cours utilisent de nouvelles approches thérapeutiques afin de rétablir l’activité de SERCA2a chez l’humain. Le but de cet article de revue est d’examiner les mécanismes régulateurs de la pompe SERCA, en mettant l’emphase sur l’influence de l’exercice dans la prévention des conditions pathologiques associées à une déficience de la fonction de SERCA. [Traduit par la Rédaction]

Get full access to this article

View all available purchase options and get full access to this article.

References

Adachi, T. 2010. Modulation of vascular sarco/endoplasmic reticulum calcium atpase in cardiovascular pathophysiology. In Advances in pharmacology. Edited by Paul M. Vanhoutte. Academic Press. pp. 165–195. [Available from www.sciencedirect.com/science/article/pii/S1054358910590069; accessed 1 October 2014].
Adachi T., Weisbrod R.M., Pimentel D.R., Ying J., Sharov V.S., Schöneich C., et al. 2004. S-Glutathiolation by peroxynitrite activates SERCA during arterial relaxation by nitric oxide. Nat. Med. 10(11): 1200–1207.
Ahn W., Lee M.G., Kim K.H., and Muallem S. 2003. Multiple effects of SERCA2b mutations associated with Darier’s disease. J. Biol. Chem. 278(23): 20795–20801.
Arai M., Alpert N.R., MacLennan D.H., Barton P., and Periasamy M. 1993. Alterations in sarcoplasmic reticulum gene expression in human heart failure. A possible mechanism for alterations in systolic and diastolic properties of the failing myocardium. Circ. Res. 72(2): 463–469.
Aronson D. and Krum H. 2012. Novel therapies in acute and chronic heart failure. Pharmacol. Ther. 135(1): 1–17.
Asahi M., Sugita Y., Kurzydlowski K., De Leon S., Tada M., Toyoshima C., et al. 2003. Sarcolipin regulates sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) by binding to transmembrane helices alone or in association with phospholamban. Proc. Natl. Acad. Sci. U.S.A. 100(9): 5040–5045.
Babu G.J., Zheng Z., Natarajan P., Wheeler D., Janssen P.M., and Periasamy M. 2005. Overexpression of sarcolipin decreases myocyte contractility and calcium transient. Cardiovasc. Res. 65(1): 177–186.
Babu G.J., Bhupathy P., Carnes C.A., Billman G.E., and Periasamy M. 2007. Differential expression of sarcolipin protein during muscle development and cardiac pathophysiology. J. Mol. Cell. Cardiol. 43(2): 215–222.
Baker D.L., Dave V., Reed T., and Periasamy M. 1996. Multiple Sp1 binding sites in the cardiac/slow twitch muscle sarcoplasmic reticulum Ca2+-ATPase gene promoter are required for expression in Sol8 muscle cells. J. Biol. Chem. 271(10): 5921–5928.
Bal N.C., Maurya S.K., Sopariwala D.H., Sahoo S.K., Gupta S.C., Shaikh S.A., et al. 2012. Sarcolipin is a newly identified regulator of muscle-based thermogenesis in mammals. Nat. Med. 18(10): 1575–1579.
Balagopal P., George D., Yarandi H., Funanage V., and Bayne E. 2005. Reversal of obesity-related hypoadiponectinemia by lifestyle intervention: a controlled, randomized study in obese adolescents. J. Clin. Endocrinol. Metab. 90(11): 6192–6197.
Ballal K., Wilson C.R., Harmancey R., and Taegtmeyer H. 2010. Obesogenic high fat western diet induces oxidative stress and apoptosis in rat heart. Mol. Cell. Biochem. 344(1–2): 221–230.
Barnes M., Gibson L.M., and Stephenson D.G. 2001. Increased muscle glycogen content is associated with increased capacity to respond to T-system depolarisation in mechanically skinned skeletal muscle fibres from the rat. Pflugers Arch. 442(1): 101–106.
Belke D.D. 2011. Swim-exercised mice show a decreased level of protein O-GlcNAcylation and expression of O-GlcNAc transferase in heart. J. Appl. Physiol. 111(1): 157–162.
Bennett C.E., Johnsen V.L., Shearer J., and Belke D.D. 2013. Exercise training mitigates aberrant cardiac protein O-GlcNAcylation in streptozotocin-induced diabetic mice. Life Sci. 92(11): 657–663.
Bers D.M. 1997. Ca transport during contraction and relaxation in mammalian ventricular muscle. Basic Res. Cardiol. 92(1): 1–10.
Bers D.M. 2002. Cardiac excitation–contraction coupling. Nature, 415(6868): 198–205.
Bhupathy P., Babu G.J., and Periasamy M. 2007. Sarcolipin and phospholamban as regulators of cardiac sarcoplasmic reticulum Ca2+ ATPase. J. Mol. Cell. Cardiol. 42(5): 903–911.
Bhupathy P., Babu G.J., Ito M., and Periasamy M. 2009. Threonine-5 at the N-terminus can modulate sarcolipin function in cardiac myocytes. J. Mol. Cell. Cardiol. 47(5): 723–729.
Bidasee K.R., Zhang Y., Shao C.H., Wang M., Patel K.P., Dincer Ü.D., et al. 2004. Diabetes increases formation of advanced glycation end products on sarco(endo)plasmic reticulum Ca2+-ATPase. Diabetes, 53(2): 463–473.
Boddu N.J., Theus S., Luo S., Wei J.Y., and Ranganathan G. 2014. Is the lack of adiponectin associated with increased ER/SR stress and inflammation in the heart? Adipocyte, 3(1): 10–18.
Bokník P., Unkel C., Kirchhefer U., Kleideiter U., Klein-Wiele O., Knapp J., et al. 1999. Regional expression of phospholamban in the human heart. Cardiovasc. Res. 43(1): 67–76.
Bombardier E., Smith I.C., Vigna C., Fajardo V.A., and Tupling A.R. 2013. Ablation of sarcolipin decreases the energy requirements for Ca2+ transport by sarco(endo)plasmic reticulum Ca2+-ATPases in resting skeletal muscle. FEBS Lett. 587(11): 1687–1692.
Brandl C.J., deLeon S., Martin D.R., and MacLennan D.H. 1987. Adult forms of the Ca2+ATPase of sarcoplasmic reticulum. Expression in developing skeletal muscle. J. Biol. Chem. 262(8): 3768–3774. [accessed 2 October 2014].
Briggs F.N., Lee K.F., Wechsler A.W., and Jones L.R. 1992. Phospholamban expressed in slow-twitch and chronically stimulated fast-twitch muscles minimally affects calcium affinity of sarcoplasmic reticulum Ca(2+)-ATPase. J. Biol. Chem. 267(36): 26056–26061.
Bupha-Intr T., Laosiripisan J., and Wattanapermpool J. 2009. Moderate intensity of regular exercise improves cardiac SR Ca2+ uptake activity in ovariectomized rats. J. Appl. Physiol. 107(4): 1105–1112.
Callen D.F., Baker E., Lane S., Nancarrow J., Thompson A., Whitmore S.A., et al. 1991. Regional mapping of the Batten disease locus (CLN3) to human chromosome 16p12. Am. J. Hum. Genet. 49(6): 1372–1377.
Carneiro-Júnior M.A., Quintão-Júnior J.F., Drummond L.R., Lavorato V.N., Drummond F.R., da Cunha D.N.Q., et al. 2013. The benefits of endurance training in cardiomyocyte function in hypertensive rats are reversed within four weeks of detraining. J. Mol. Cell. Cardiol. 57: 119–128.
Chang K.C., Figueredo V.M., Schreur J.H., Kariya K., Weiner M.W., Simpson P.C., et al. 1997. Thyroid hormone improves function and Ca2+ handling in pressure overload hypertrophy. Association with increased sarcoplasmic reticulum Ca2+-ATPase and alpha-myosin heavy chain in rat hearts. J. Clin. Invest. 100(7): 1742–1749.
Choi Y.S., Kim S., and Pak Y.K. 2001. Mitochondrial transcription factor A (mtTFA) and diabetes. Diabetes Res. Clin. Pract. 54(Suppl. 2): S3–S9.
Ciloglu F., Peker I., Pehlivan A., Karacabey K., Ilhan N., Saygin O., et al. 2005. Exercise intensity and its effects on thyroid hormones. Neuro Endocrinol. Lett. 26(6): 830–834.
Clark R.J., McDonough P.M., Swanson E., Trost S.U., Suzuki M., Fukuda M., et al. 2003. Diabetes and the accompanying hyperglycemia impairs cardiomyocyte calcium cycling through increased nuclear O-GlcNAcylation. J. Biol. Chem. 278(45): 44230–44237.
Cuenda A., Centeno F., and Gutierrez-Merino C. 1991. Modulation by phosphorylation of glycogen phosphorylase–sarcoplasmic reticulum interaction. FEBS Lett. 283(2): 273–276.
Dally S., Bredoux R., Corvazier E., Andersen J.P., Clausen J.D., Dode L., et al. 2006. Ca2+-ATPases in non-failing and failing heart: evidence for a novel cardiac sarco/endoplasmic reticulum Ca2+-ATPase 2 isoform (SERCA2c). Biochem. J. 395(2): 249.
De Maio A. 1999. Heat shock proteins: facts, thoughts, and dreams. Shock, 11(1): 1–12.
Del Monte F., Harding S.E., Schmidt U., Matsui T., Kang Z.B., Dec G.W., et al. 1999. Restoration of contractile function in isolated cardiomyocytes from failing human hearts by gene transfer of SERCA2a. Circulation, 100(23): 2308–2311.
Del Monte F., Harding S.E., Dec G.W., Gwathmey J.K., and Hajjar R.J. 2002. Targeting phospholamban by gene transfer in human heart failure. Circulation, 105(8): 904–907.
Dhitavat J., Dode L., Leslie N., Sakuntabhai A., Lorette G., and Hovnanian A. 2003. Mutations in the sarcoplasmic/endoplasmic reticulum Ca2+ ATPase isoform cause Darier’s disease. J. Invest. Dermatol. 121(3): 486–489.
Duhamel T.A., Green H.J., Perco J.G., and Ouyang J. 2005. Metabolic and sarcoplasmic reticulum Ca2+ cycling responses in human muscle 4 days following prolonged exercise. Can. J. Physiol. Pharmacol. 83(7): 643–655.
Duhamel T.A., Green H.J., Perco J.G., and Ouyang J. 2006. Comparative effects of a low-carbohydrate diet and exercise plus a low-carbohydrate diet on muscle sarcoplasmic reticulum responses in males. Am. J. Physiol. Cell Physiol. 291(4): C607–C617.
Entman M.L., Bornet E.P., Barber A.J., Schwartz A., Levey G.S., Lehotay D.C., et al. 1977a. The cardiac sarcoplasmic reticulum–glycogenolytic complex. A possible effector site for cyclic AMP. Biochim. Biophys. Acta, 499(2): 228–237.
Entman M.L., Bornet E.P., Van Winkle W.B., Goldstein M.A., and Schwartz A. 1977b. Association of glycogenolysis with cardiac sarcoplasmic reticulum: II. Effect of glycogen depletion, deoxycholate solubilization and cardiac ischemia: evidence for a phorphorylase kinase membrane complex. J. Mol. Cell. Cardiol. 9(7): 515–528.
Entman M.L., Keslensky S.S., Chu A., and Van Winkle W.B. 1980. The sarcoplasmic reticulum–glycogenolytic complex in mammalian fast twitch skeletal muscle. Proposed in vitro counterpart of the contraction-activated glycogenolytic pool. J. Biol. Chem. 255(13): 6245–6252.
Fabiato A. 1983. Calcium-induced release of calcium from the cardiac sarcoplasmic reticulum. Am. J. Physiol. 245(1): C1–C14.
Favero T.G., Colter D., Hooper P.F., and Abramson J.J. 1998. Hypochlorous acid inhibits Ca2+-ATPase from skeletal muscle sarcoplasmic reticulum. J. Appl. Physiol. 84(2): 425–430. [accessed 17 November 2014].
Flesch M. 2001. On the trail of cardiac specific transcription factors. Cardiovasc. Res. 50(1): 3–6.
Foster D.B., Liu T., Rucker J., O’Meally R.N., Devine L.R., Cole R.N., et al. 2013. The cardiac acetyl-lysine proteome. PLoS One, 8(7): e67513.
Gamu D., Bombardier E., Smith I.C., Fajardo V.A., and Tupling A.R. 2014. Sarcolipin provides a novel muscle-based mechanism for adaptive thermogenesis. Exerc. Sport Sci. Rev. 42(3): 136–142.
Gehrig S.M., van der Poel C., Sayer T.A., Schertzer J.D., Henstridge D.C., Church J.E., et al. 2012. Hsp72 preserves muscle function and slows progression of severe muscular dystrophy. Nature, 484(7394): 394–398.
Gélébart P., Martin V., Enouf J., and Papp B. 2003. Identification of a new SERCA2 splice variant regulated during monocytic differentiation. Biochem. Biophys. Res. Commun. 303(2): 676–684.
Gheorghiade M., Blair J.E.A., Filippatos G.S., Macarie C., Ruzyllo W., Korewicki J., et al. 2008. Hemodynamic, echocardiographic, and neurohormonal effects of istaroxime, a novel intravenous inotropic and lusitropic agent: a randomized controlled trial in patients hospitalized with heart failure. J. Am. Coll. Cardiol. 51(23): 2276–2285.
Ghezzi P. 2005. Oxidoreduction of protein thiols in redox regulation. Biochem. Soc. Trans. 33(6): 1378.
Gleyzer N., Vercauteren K., and Scarpulla R.C. 2005. Control of mitochondrial transcription specificity factors (TFB1M and TFB2M) by nuclear respiratory factors (NRF-1 and NRF-2) and PGC-1 family coactivators. Mol. Cell. Biol. 25(4): 1354–1366.
Gramolini A.O., Trivieri M.G., Oudit G.Y., Kislinger T., Li W., Patel M.M., et al. 2006. Cardiac-specific overexpression of sarcolipin in phospholamban null mice impairs myocyte function that is restored by phosphorylation. Proc. Natl. Acad. Sci. U.S.A. 103(7): 2446–2451.
Green H.J., Ballantyne C.S., MacDougall J.D., Tarnopolsky M.A., and Schertzer J.D. 2003. Adaptations in human muscle sarcoplasmic reticulum to prolonged submaximal training. J. Appl. Physiol. 94(5): 2034–2042.
Green H.J., Burnett M., Kollias H., Ouyang J., Smith I., and Tupling S. 2011. Malleability of human skeletal muscle sarcoplasmic reticulum to short-term training. Appl. Physiol. Nutr. Metab. 36(6): 904–912.
Gunteski-Hamblin A.M., Greeb J., and Shull G.E. 1988. A novel Ca2+ pump expressed in brain, kidney, and stomach is encoded by an alternative transcript of the slow-twitch muscle sarcoplasmic reticulum Ca-ATPase gene. Identification of cDNAs encoding Ca2+ and other cation-transporting ATPases using an oligonucleotide probe derived from the ATP-binding site. J. Biol. Chem. 263(29): 15032–15040.
Guo J., Bian Y., Bai R., Li H., Fu M., and Xiao C. 2013. Globular adiponectin attenuates myocardial ischemia/reperfusion injury by upregulating endoplasmic reticulum Ca2+-ATPase activity and inhibiting endoplasmic reticulum stress. J. Cardiovasc. Pharmacol. 62(2): 143–153.
Gurha P., Abreu-Goodger C., Wang T., Ramirez M.O., Drumond A.L., van Dongen S., et al. 2012. Targeted deletion of microRNA-22 promotes stress-induced cardiac dilation and contractile dysfunction. Circulation, 125(22): 2751–2761.
Hartong R., Wang N., Kurokawa R., Lazar M.A., Glass C.K., Apriletti J.W., et al. 1994. Delineation of three different thyroid hormone-response elements in promoter of rat sarcoplasmic reticulum Ca2+ATPase gene. Demonstration that retinoid X receptor binds 5′ to thyroid hormone receptor in response element 1. J. Biol. Chem. 269(17): 13021–13029.
Hasenfuss G. 1998. Alterations of calcium-regulatory proteins in heart failure. Cardiovasc. Res. 37(2): 279–289.
Hovnanian A. 2007. SERCA pumps and human diseases. Subcell. Biochem. 45: 337–363.
Hu Y., Belke D., Suarez J., Swanson E., Clark R., Hoshijima M., et al. 2005. Adenovirus-mediated overexpression of O-GlcNAcase improves contractile function in the diabetic heart. Circ. Res. 96(9): 1006–1013.
Ikeuchi M., Matsusaka H., Kang D., Matsushima S., Ide T., Kubota T., et al. 2005. Overexpression of mitochondrial transcription factor a ameliorates mitochondrial deficiencies and cardiac failure after myocardial infarction. Circulation, 112(5): 683–690.
Jardim-Messeder D., Camacho-Pereira J., and Galina A. 2012. 3-Bromopyruvate inhibits calcium uptake by sarcoplasmic reticulum vesicles but not SERCA ATP hydrolysis activity. Int. J. Biochem. Cell Biol. 44(5): 801–807.
Jaski B.E., Jessup M.L., Mancini D.M., Cappola T.P., Pauly D.F., Greenberg B., et al. 2009. Calcium upregulation by percutaneous administration of gene therapy in cardiac disease (CUPID Trial), a first-in-human phase 1/2 clinical trial. J. Card. Fail. 15(3): 171–181.
Jessup M., Greenberg B., Mancini D., Cappola T., Pauly D.F., Jaski B., et al. 2011. Calcium upregulation by percutaneous administration of gene therapy in cardiac disease (CUPID): a phase 2 trial of intracoronary gene therapy of sarcoplasmic reticulum Ca2+-ATPase in patients with advanced heart failure. Circulation, 124(3): 304–313.
Johnsen V.L., Belke D.D., Hughey C.C., Hittel D.S., Hepple R.T., Koch L.G., et al. 2013. Enhanced cardiac protein glycosylation (O-GlcNAc) of selected mitochondrial proteins in rats artificially selected for low running capacity. Physiol. Genomics, 45(1): 17–25.
Kalyanasundaram A., Lacombe V.A., Belevych A.E., Brunello L., Carnes C.A., Janssen P.M.L., et al. 2013. Up-regulation of sarcoplasmic reticulum Ca(2+) uptake leads to cardiac hypertrophy, contractile dysfunction and early mortality in mice deficient in CASQ2. Cardiovasc. Res. 98(2): 297–306.
Kawase Y. and Hajjar R.J. 2008. The cardiac sarcoplasmic/endoplasmic reticulum calcium ATPase: a potent target for cardiovascular diseases. Nat. Clin. Pract. Cardiovasc. Med. 5(9): 554–565.
Kaye D.M., Preovolos A., Marshall T., Byrne M., Hoshijima M., Hajjar R., et al. 2007. Percutaneous cardiac recirculation-mediated gene transfer of an inhibitory phospholamban peptide reverses advanced heart failure in large animals. J. Am. Coll. Cardiol. 50(3): 253–260.
Kemi O.J., Ellingsen O., Ceci M., Grimaldi S., Smith G.L., Condorelli G., et al. 2007. Aerobic interval training enhances cardiomyocyte contractility and Ca2+ cycling by phosphorylation of CaMKII and Thr-17 of phospholamban. J. Mol. Cell. Cardiol. 43(3): 354–361.
Kemi O.J., Ceci M., Condorelli G., Smith G.L., and Wisloff U. 2008. Myocardial sarcoplasmic reticulum Ca2+ ATPase function is increased by aerobic interval training. Eur. J. Cardiovasc. Prev. Rehabil. 15(2): 145–148.
Kho C., Lee A., Jeong D., Oh J.G., Chaanine A.H., Kizana E., et al. 2011. SUMO1-dependent modulation of SERCA2a in heart failure. Nature, 477(7366): 601–605.
Kimura Y., Otsu K., Nishida K., Kuzuya T., and Tada M. 1994. Thyroid hormone enhances Ca2+ pumping activity of the cardiac sarcoplasmic reticulum by increasing Ca2+ ATPase and decreasing phospholamban expression. J. Mol. Cell. Cardiol. 26(9): 1145–1154.
Kinnunen S. and Mänttäri S. 2012. Specific effects of endurance and sprint training on protein expression of calsequestrin and SERCA in mouse skeletal muscle. J. Muscle Res. Cell Motil. 33(2): 123–130.
Kiss E., Jakab G., Kranias E.G., and Edes I. 1994. Thyroid hormone-induced alterations in phospholamban protein expression. Regulatory effects on sarcoplasmic reticulum Ca2+ transport and myocardial relaxation. Circ. Res. 75(2): 245–251.
Koss K.L., Ponniah S., Jones W.K., Grupp I.L., and Kranias E.G. 1995. Differential phospholamban gene expression in murine cardiac compartments. Molecular and physiological analyses. Circ. Res. 77(2): 342–353.
Kubo H., Libonati J.R., Kendrick Z.V., Paolone A., Gaughan J.P., and Houser S.R. 2003. Differential effects of exercise training on skeletal muscle SERCA gene expression. Med. Sci. Sports Exerc. 35(1): 27–31. [Accessed 5 October 2014].
Kumarswamy R., Lyon A.R., Volkmann I., Mills A.M., Bretthauer J., Pahuja A., et al. 2012. SERCA2a gene therapy restores microRNA-1 expression in heart failure via an Akt/FoxO3A-dependent pathway. Eur. Heart J. 33(9): 1067–1075.
Lalli M.J., Yong J., Prasad V., Hashimoto K., Plank D., Babu G.J., et al. 2001. Sarcoplasmic reticulum Ca2+ ATPase (SERCA) 1a structurally substitutes for SERCA2a in the cardiac sarcoplasmic reticulum and increases cardiac Ca2+ handling capacity. Circ. Res. 89(2): 160–167.
Lancel S., Zhang J., Evangelista A., Trucillo M.P., Tong X., Siwik D.A., et al. 2009. Nitroxyl activates SERCA in cardiac myocytes via glutathiolation of cysteine 674. Circ. Res. 104(6): 720–723.
Leberer E., Härtner K.T., Brandl C.J., Fujii J., Tada M., MacLennan D.H., et al. 1989. Slow/cardiac sarcoplasmic reticulum Ca2+-ATPase and phospholamban mRNAs are expressed in chronically stimulated rabbit fast-twitch muscle. Eur. J. Biochem. 185(1): 51–54.
Lees S.J., Franks P.D., Spangenburg E.E., and Williams J.H. 2001. Glycogen and glycogen phosphorylase associated with sarcoplasmic reticulum: effects of fatiguing activity. J. Appl. Physiol. 91(4): 1638–1644.
Leppik J.A., Aughey R.J., Medved I., Fairweather I., Carey M.F., and McKenna M.J. 2004. Prolonged exercise to fatigue in humans impairs skeletal muscle Na+-K+-ATPase activity, sarcoplasmic reticulum Ca2+ release, and Ca2+ uptake. J. Appl. Physiol. 97(4): 1414–1423.
Levitzki A. 1988. From epinephrine to cyclic AMP. Science, 241(4867): 800–806.
Liu J. and Brautigan D.L. 2000. Insulin-stimulated phosphorylation of the protein phosphatase-1 striated muscle glycogen-targeting subunit and activation of glycogen synthase. J. Biol. Chem. 275(21): 15940–15947.
Lokuta A.J., Maertz N.A., Meethal S.V., Potter K.T., Kamp T.J., Valdivia H.H., et al. 2005. Increased nitration of sarcoplasmic reticulum Ca2+-ATPase in human heart failure. Circulation, 111(8): 988–995.
Lompré A.M., Anger M., and Levitsky D. 1994. Sarco(endo)plasmic reticulum calcium pumps in the cardiovascular system: function and gene expression. J. Mol. Cell. Cardiol. 26(9): 1109–1121.
Loukianov E., Ji Y., Grupp I.L., Kirkpatrick D.L., Baker D.L., Loukianova T., et al. 1998. Enhanced myocardial contractility and increased Ca2+ transport function in transgenic hearts expressing the fast-twitch skeletal muscle sarcoplasmic reticulum Ca2+-ATPase. Circ. Res. 83(9): 889–897.
Lumini-Oliveira J., Magalhães J., Pereira C.V., Moreira A.C., Oliveira P.J., and Ascensão A. 2011. Endurance training reverts heart mitochondrial dysfunction, permeability transition and apoptotic signaling in long-term severe hyperglycemia. Mitochondrion, 11(1): 54–63.
MacDonnell S.M., Kubo H., Crabbe D.L., Renna B.F., Reger P.O., Mohara J., et al. 2005. Improved myocardial beta-adrenergic responsiveness and signaling with exercise training in hypertension. Circulation, 111(25): 3420–3428.
MacLennan D.H. and Kranias E.G. 2003. Phospholamban: a crucial regulator of cardiac contractility. Nat. Rev. Mol. Cell Biol. 4(7): 566–577.
Mercadier J.J., Lompré A.M., Duc P., Boheler K.R., Fraysse J.B., Wisnewsky C., et al. 1990. Altered sarcoplasmic reticulum Ca(2+)-ATPase gene expression in the human ventricle during end-stage heart failure. J. Clin. Invest. 85(1): 305–309.
Minamisawa S., Wang Y., Chen J., Ishikawa Y., Chien K.R., and Matsuoka R. 2003. Atrial chamber-specific expression of sarcolipin is regulated during development and hypertrophic remodeling. J. Biol. Chem. 278(11): 9570–9575.
Morissette M.P., Susser S.E., Stammers A.N., O’Hara K.A., Gardiner P.F., Sheppard P., et al. 2014. Differential regulation of the fiber type-specific gene expression of the sarcoplasmic reticulum calcium-ATPase isoforms induced by exercise training. J. Appl. Physiol. 117(5): 544–555.
Morris T.E. and Sulakhe P.V. 1997. Sarcoplasmic reticulum Ca(2+)-pump dysfunction in rat cardiomyocytes briefly exposed to hydroxyl radicals. Free Radic. Biol. Med. 22(1–2): 37–47.
Nagai R., Zarain-Herzberg A., Brandl C.J., Fujii J., Tada M., MacLennan D.H., et al. 1989. Regulation of myocardial Ca2+-ATPase and phospholamban mRNA expression in response to pressure overload and thyroid hormone. Proc. Natl. Acad. Sci. U.S.A. 86(8): 2966–2970.
Norby F.L., Wold L.E., Duan J., Hintz K.K., and Ren J. 2002. IGF-I attenuates diabetes-induced cardiac contractile dysfunction in ventricular myocytes. Am. J. Physiol. Endocrinol. Metab. 283(4): E658–E666.
Norrbom J., Sundberg C.J., Ameln H., Kraus W.E., Jansson E., and Gustafsson T. 2004. PGC-1alpha mRNA expression is influenced by metabolic perturbation in exercising human skeletal muscle. J. Appl. Physiol. 96(1): 189–194.
Norrbom J., Wallman S.E., Gustafsson T., Rundqvist H., Jansson E., and Sundberg C.J. 2010. Training response of mitochondrial transcription factors in human skeletal muscle. Acta Physiol. (Oxf.), 198(1): 71–79.
Odermatt A., Taschner P.E., Khanna V.K., Busch H.F., Karpati G., Jablecki C.K., et al. 1996. Mutations in the gene-encoding SERCA1, the fast-twitch skeletal muscle sarcoplasmic reticulum Ca2+ ATPase, are associated with Brody disease. Nat. Genet. 14(2): 191–194.
Ørtenblad N., Nielsen J., Saltin B., and Holmberg H.-C. 2011. Role of glycogen availability in sarcoplasmic reticulum Ca2+ kinetics in human skeletal muscle. J. Physiol. 589(3): 711–725.
Otsu K., Fujii J., Periasamy M., Difilippantonio M., Uppender M., Ward D.C., et al. 1993. Chromosome mapping of five human cardiac and skeletal muscle sarcoplasmic reticulum protein genes. Genomics, 17(2): 507–509.
Park W.J. and Oh J.G. 2013. SERCA2a: a prime target for modulation of cardiac contractility during heart failure. BMB Rep. 46(5): 237–243.
Periasamy M. and Kalyanasundaram A. 2007. SERCA pump isoforms: Their role in calcium transport and disease. Muscle Nerve, 35(4): 430–442.
Periasamy M., Bhupathy P., and Babu G.J. 2008. Regulation of sarcoplasmic reticulum Ca2+ ATPase pump expression and its relevance to cardiac muscle physiology and pathology. Cardiovasc. Res. 77(2): 265–273.
Peters D.G., Mitchell-Felton H., and Kandarian S.C. 1999. Unloading induces transcriptional activation of the sarco(endo)plasmic reticulum Ca2+-ATPase 1 gene in muscle. Am. J. Physiol. 276(5): C1218–C1225.
Pischon T., Girman C.J., Hotamisligil G.S., Rifai N., Hu F.B., and Rimm E.B. 2004. Plasma adiponectin levels and risk of myocardial infarction in men. JAMA, 291(14): 1730–1737.
Reed T.D., Babu G.J., Ji Y., Zilberman A., Ver Heyen M., Wuytack F., et al. 2000. The expression of SR calcium transport ATPase and the Na(+)/Ca(2+)Exchanger are antithetically regulated during mouse cardiac development and in hypo/hyperthyroidism. J. Mol. Cell. Cardiol. 32(3): 453–464.
Rohrer D. and Dillmann W.H. 1988. Thyroid hormone markedly increases the mRNA coding for sarcoplasmic reticulum Ca2+-ATPase in the rat heart. J. Biol. Chem. 263(15): 6941–6944.
Sack M.N. 2011. Emerging characterization of the role of SIRT3-mediated mitochondrial protein deacetylation in the heart. Am. J. Physiol. Heart Circ. Physiol. 301(6): H2191–H2197.
Safwat Y., Yassin N., Gamal El Din M., and Kassem L. 2013. Modulation of skeletal muscle performance and SERCA by exercise and adiponectin gene therapy in insulin-resistant rat. DNA Cell Biol. 32(7): 378–385.
Sahoo S.K., Shaikh S.A., Sopariwala D.H., Bal N.C., and Periasamy M. 2013. Sarcolipin protein interaction with sarco(endo)plasmic reticulum Ca2+ ATPase (SERCA) is distinct from phospholamban protein, and only sarcolipin can promote uncoupling of the SERCA pump. J. Biol. Chem. 288(10): 6881–6889.
Schulte L.M., Navarro J., and Kandarian S.C. 1993. Regulation of sarcoplasmic reticulum calcium pump gene expression by hindlimb unweighting. Am. J. Physiol. 264(5): C1308–C1315.
Simpson K.A. and Singh M.A.F. 2008. Effects of exercise on adiponectin: a systematic review. Obesity (Silver Spring), 16(2): 241–256.
Smith I.C., Bombardier E., Vigna C., and Tupling A.R. 2013. ATP consumption by sarcoplasmic reticulum Ca2+ pumps accounts for 40–50% of resting metabolic rate in mouse fast and slow twitch skeletal muscle. PLoS One, 8(7): e68924.
Suarez J., Hu Y., Makino A., Fricovsky E., Wang H., and Dillmann W.H. 2008a. Alterations in mitochondrial function and cytosolic calcium induced by hyperglycemia are restored by mitochondrial transcription factor A in cardiomyocytes. Am. J. Physiol. Cell Physiol. 295(6): C1561–C1568.
Suarez J., Scott B., and Dillmann W.H. 2008b. Conditional increase in SERCA2a protein is able to reverse contractile dysfunction and abnormal calcium flux in established diabetic cardiomyopathy. Am. J. Physiol. Regul. Integr. Comp. Physiol. 295(5): R1439–R1445.
Sulaiman M., Matta M.J., Sunderesan N.R., Gupta M.P., Periasamy M., and Gupta M. 2010. Resveratrol, an activator of SIRT1, upregulates sarcoplasmic calcium ATPase and improves cardiac function in diabetic cardiomyopathy. Am. J. Physiol. Heart Circ. Physiol. 298(3): H833–H843.
Takizawa T., Arai M., Tomaru K., Koitabashi N., Baker D.L., Periasamy M., et al. 2003. Transcription factor Sp1 regulates SERCA2 gene expression in pressure-overloaded hearts: a study using in vivo direct gene transfer into living myocardium. J. Mol. Cell. Cardiol. 35(7): 777–783.
Tang W.H., Cheng W.T., Kravtsov G.M., Tong X.Y., Hou X.Y., Chung S.K., et al. 2010. Cardiac contractile dysfunction during acute hyperglycemia due to impairment of SERCA by polyol pathway-mediated oxidative stress. Am. J. Physiol. Cell Physiol. 299(3): C643–C653.
Tilemann L., Lee A., Ishikawa K., Aguero J., Rapti K., Santos-Gallego C., et al. 2013. SUMO-1 gene transfer improves cardiac function in a large-animal model of heart failure. Sci. Transl. Med. 5(211): 211ra159.
Tong X., Ying J., Pimentel D.R., Trucillo M., Adachi T., and Cohen R.A. 2008. High glucose oxidizes SERCA cysteine-674 and prevents inhibition by nitric oxide of smooth muscle cell migration. J. Mol. Cell. Cardiol. 44(2): 361–369.
Toyoshima C. 2009. How Ca2+-ATPase pumps ions across the sarcoplasmic reticulum membrane. Biochim. Biophys. Acta, 1793(6): 941–946.
Toyoshima C. and Inesi G. 2004. Structural basis of ion pumping by Ca2+-ATPase of the sarcoplasmic reticulum. Annu. Rev. Biochem. 73: 269–292.
Tsien R.W. 1977. Cyclic AMP and contractile activity in heart. Adv. Cyclic Nucleotide Res. 8: 363–420.
Tsuji T., Del Monte F., Yoshikawa Y., Abe T., Shimizu J., Nakajima-Takenaka C., et al. 2009. Rescue of Ca2+ overload-induced left ventricular dysfunction by targeted ablation of phospholamban. Am. J. Physiol. Heart Circ. Physiol. 296(2): H310–H317.
Tupling A.R., Gramolini A.O., Duhamel T.A., Kondo H., Asahi M., Tsuchiya S.C., et al. 2004. HSP70 Binds to the fast-twitch skeletal muscle sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA1a) and prevents thermal inactivation. J. Biol. Chem. 279(50): 52382–52389.
Van Rechem C., Boulay G., Pinte S., Stankovic-Valentin N., Guérardel C., and Leprince D. 2010. Differential regulation of HIC1 target genes by CtBP and NuRD, via an acetylation/SUMOylation switch, in quiescent versus proliferating cells. Mol. Cell. Biol. 30(16): 4045–4059.
Villarreal-Molina M.T. and Antuna-Puente B. 2012. Adiponectin: anti-inflammatory and cardioprotective effects. Biochimie, 94(10): 2143–2149.
Wahlquist C., Jeong D., Rojas-Muñoz A., Kho C., Lee A., Mitsuyama S., et al. 2014. Inhibition of miR-25 improves cardiac contractility in the failing heart. Nature, 508(7497): 531–535.
Wang Y., Tao L., Yuan Y., Lau W.B., Li R., Lopez B.L., et al. 2009. Cardioprotective effect of adiponectin is partially mediated by its AMPK-independent antinitrative action. Am. J. Physiol. Endocrinol. Metab. 297(2): E384–E391.
Watanabe A., Arai M., Koitabashi N., Niwano K., Ohyama Y., Yamada Y., et al. 2011. Mitochondrial transcription factors TFAM and TFB2M regulate Serca2 gene transcription. Cardiovasc. Res. 90(1): 57–67.
Wisløff U., Loennechen J.P., Currie S., Smith G.L., and Ellingsen Ø. 2002. Aerobic exercise reduces cardiomyocyte hypertrophy and increases contractility, Ca2+ sensitivity and SERCA-2 in rat after myocardial infarction. Cardiovasc. Res. 54(1): 162–174.
Wuytack F., Raeymaekers L., and Missiaen L. 2002. Molecular physiology of the SERCA and SPCA pumps. Cell Calcium, 32(5–6): 279–305.
Xu K.Y. and Becker L.C. 1998. Ultrastructural localization of glycolytic enzymes on sarcoplasmic reticulum vesticles. J. Histochem. Cytochem. 46(4): 419–427.
Xu K.Y., Zweier J.L., and Becker L.C. 1995. Functional coupling between glycolysis and sarcoplasmic reticulum Ca2+ transport. Circ. Res. 77(1): 88–97.
Xu K.Y., Zweier J.L., and Becker L.C. 1997. Hydroxyl radical inhibits sarcoplasmic reticulum Ca2+-ATPase function by direct attack on the ATP binding site. Circ. Res. 80(1): 76–81.
Yokoe S., Asahi M., Takeda T., Otsu K., Taniguchi N., Miyoshi E., et al. 2010. Inhibition of phospholamban phosphorylation by O-GlcNAcylation: implications for diabetic cardiomyopathy. Glycobiology, 20(10): 1217–1226.
Zarain-Herzberg A., Marques J., Sukovich D., and Periasamy M. 1994. Thyroid hormone receptor modulates the expression of the rabbit cardiac sarco (endo) plasmic reticulum Ca(2+)-ATPase gene. J. Biol. Chem. 269(2): 1460–1467.
Zhang Y., Fujii J., Phillips M.S., Chen H.-S., Karpati G., Yee W.-C., et al. 1995. Characterization of cDNA and Genomic DNA Encoding SERCA1, the Ca2+-ATPase of human fast-twitch skeletal muscle sarcoplasmic reticulum, and its elimination as a candidate gene for Brody Disease. Genomics, 30(3): 415–424.
Zhao W., Frank K.F., Chu G., Gerst M.J., Schmidt A.G., Ji Y., et al. 2003. Combined phospholamban ablation and SERCA1a overexpression result in a new hyperdynamic cardiac state. Cardiovasc. Res. 57(1): 71–81.
Zhao Y., Koebis M., Suo S., Ohno S., and Ishiura S. 2012. Regulation of the alternative splicing of sarcoplasmic reticulum Ca2+-ATPase1 (SERCA1) by phorbol 12-myristate 13-acetate (PMA) via a PKC pathway. Biochem. Biophys. Res. Commun. 423(2): 212–217.
Zheng J., Yancey D.M., Ahmed M.I., Wei C.-C., Powell P.C., Shanmugam M., et al. 2014. Increased sarcolipin expression and adrenergic drive in humans with preserved left ventricular ejection fraction and chronic isolated mitral regurgitation. Circ. Heart Fail. 7(1): 194–202.
Zsebo K., Yaroshinsky A., Rudy J.J., Wagner K., Greenberg B., Jessup M., et al. 2014. Long-term effects of AAV1/SERCA2a gene transfer in patients with severe heart failure: analysis of recurrent cardiovascular events and mortality. Circ. Res. 114(1): 101–108.

Information & Authors

Information

Published In

cover image Canadian Journal of Physiology and Pharmacology
Canadian Journal of Physiology and Pharmacology
Volume 93Number 10October 2015
Pages: 843 - 854

History

Received: 20 November 2014
Accepted: 8 January 2015
Accepted manuscript online: 19 January 2015
Version of record online: 19 January 2015

Notes

This Invited Review is part of a Special Issue entitled “2nd Cardiovascular Forum for Promoting Centers of Excellence and Young Investigators.”

Permissions

Request permissions for this article.

Key Words

  1. calcium (Ca2+)
  2. cardiac muscle
  3. skeletal muscle
  4. phospholamban (PLN)
  5. sarcolipin (SLN)
  6. exercise
  7. post-translational modifications
  8. heart failure

Mots-clés

  1. calcium (Ca2+)
  2. muscle cardiaque
  3. muscle squelettique
  4. phospholamban (PLN)
  5. sarcolipine (SLN)
  6. exercice
  7. modifications post-traductionnelles
  8. insuffisance cardiaque

Authors

Affiliations

Andrew N. Stammers
Health, Leisure & Human Performance Research Institute, Faculty of Kinesiology & Recreation Management, University of Manitoba.
Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre.
Shanel E. Susser
Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre.
Department of Physiology, Faculty of Health Sciences, University of Manitoba.
Naomi C. Hamm
Health, Leisure & Human Performance Research Institute, Faculty of Kinesiology & Recreation Management, University of Manitoba.
Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre.
Michael W. Hlynsky
Health, Leisure & Human Performance Research Institute, Faculty of Kinesiology & Recreation Management, University of Manitoba.
Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre.
Dustin E. Kimber
Health, Leisure & Human Performance Research Institute, Faculty of Kinesiology & Recreation Management, University of Manitoba.
Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre.
D. Scott Kehler
Health, Leisure & Human Performance Research Institute, Faculty of Kinesiology & Recreation Management, University of Manitoba.
Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre.
Todd A. Duhamel* [email protected]
Health, Leisure & Human Performance Research Institute, Faculty of Kinesiology & Recreation Management, University of Manitoba.
Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre.
Department of Physiology, Faculty of Health Sciences, University of Manitoba.

Notes

*
Present address: 317 Max Bell Center, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.

Metrics & Citations

Metrics

Other Metrics

Citations

Cite As

Export Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

1. Damage to the sarcoplasmic reticulum by venom of the Mexican black-tailed rattlesnake ( Crotalus molossus nigrescens ): inhibition of the Ca 2+ -ATPase and membrane lipid disruption
2. Ca2+/calmodulin signaling in organismal aging and cellular senescence: Impact on human diseases
3. The SGLT2 inhibitor remogliflozin induces vasodilation in the femoral artery of rabbits via activation of a Kv channel, the SERCA pump, and the cGMP signaling pathway
4.
5. Spaceflight increases sarcoplasmic reticulum Ca2+ leak and this cannot be counteracted with BuOE treatment
6. N-Terminomic Identification of Intracellular MMP-2 Substrates in Cardiac Tissue
7. Druglike Molecules Binding to Large Membrane Proteins: Absolute Binding Free Energy Computation
8. Relative sarcolipin (SLN) and sarcoplasmic reticulum Ca2+ ATPase (SERCA1) transcripts levels in closely related endothermic and ectothermic scombrid fishes: Implications for molecular basis of futile calcium cycle non-shivering thermogenesis (NST)
9. Phosphorylation of phospholamban promotes SERCA2a activation by dwarf open reading frame (DWORF)
10. Cardiovascular Physiology
11. Compound SJ-12 attenuates streptozocin-induced diabetic cardiomyopathy by stabilizing SERCA2a
12. The antidiabetic drug ipragliflozin induces vasorelaxation of rabbit femoral artery by activating a Kv channel, the SERCA pump, and the PKA signaling pathway
13. Transcriptomic Profiling of Bean Aphid Megoura crassicauda upon Exposure to the Aphid-Obligate Entomopathogen Conidiobolus obscurus (Entomophthoromycotina) and Screening of CytCo-Binding Aphid Proteins through a Pull-Down Assay
14. Data-Independent Acquisition Proteomics and N-Terminomics Methods Reveal Alterations in Mitochondrial Function and Metabolism in Ischemic-Reperfused Hearts
15. The Complex Interplay between Toxic Hallmark Proteins, Calmodulin-Binding Proteins, Ion Channels, and Receptors Involved in Calcium Dyshomeostasis in Neurodegeneration
16. Spaceflight increases sarcoplasmic reticulum Ca 2+ leak and this cannot be counteracted with BuOE treatment
17. Cardiac Mechanics: The Physiology, Mechanism, and Toxicology of the Heart׳s Function as a Pump
18. Sarcolipin (sln) and Sarcoplasmic Reticulum calcium ATPase pump (serca1) expression increase in Japanese medaka (Oryzias latipes) skeletal muscle tissue following cold challenge
19. The role of deubiquitinases in cardiac disease
20. Regulation of cardiac calcium signaling by newly identified calcium pump modulators
21. S100 proteins in cardiovascular diseases
22. Biochemical and proteomic insights into sarcoplasmic reticulum Ca 2+ -ATPase complexes in skeletal muscles
23. Endogenous and Exogenous Antioxidants in Skeletal Muscle Fatigue Development during Exercise
24. New N-aryl-N-alkyl-thiophene-2-carboxamide compound enhances intracellular Ca2+ dynamics by increasing SERCA2a Ca2+ pumping
25. The feasibility of skin mucus replacing exosome as a pool for bacteria-infected markers development via comparative proteomic screening in teleost
26. Istaroxime and Beyond: New Therapeutic Strategies to Specifically Activate SERCA and Treat Heart Failure
27. Regulation of A-to-I RNA editing and stop codon recoding to control selenoprotein expression during skeletal myogenesis
28. SARS-CoV-2 Nsp6 damages Drosophila heart and mouse cardiomyocytes through MGA/MAX complex-mediated increased glycolysis
29. Characterizing the Effects of Voluntary Wheel Running on Cardiac SERCA Function in Ovariectomized Mice
30. Metformin attenuates an increase of calcium-dependent and ubiquitin-proteasome markers in unloaded muscle
31. Hydrogen Sulfide Regulates SERCA2a Ubiquitylation via Muscle RING Finger-1 S-Sulfhydration to Affect Cardiac Contractility in db/db Mice
32. Kir2.1 dysfunction at the sarcolemma and the sarcoplasmic reticulum causes arrhythmias in a mouse model of Andersen–Tawil syndrome type 1
33. Molecular cloning and functional characterization of sarco/endoplasmic reticulum Ca 2+ ‐ ATPase from Chinese mitten crab ( Eriocheir sinensis )
34. Time course and fibre type‐dependent nature of calcium‐handling protein responses to sprint interval exercise in human skeletal muscle
35. Sirtuin 3 overexpression preserves maximal sarco(endo)plasmic reticulum calcium ATPase activity in the skeletal muscle of mice subjected to high fat – high sucrose feeding
36. Bistability and Chaos Emergence in Spontaneous Dynamics of Astrocytic Calcium Concentration
37. Exercise and/or Cold Exposure Alters the Gene Expression Profile in the Fat Body and Changes the Heart Function in Drosophila
38. LncEDCH1 improves mitochondrial function to reduce muscle atrophy by interacting with SERCA2
39. Staurosporine-induced cleavage of apoptosis-inducing factor in human fibrosarcoma cells is independent of matrix metalloproteinase-2
40. Mechanisms of Myocardial Stunning in Stress-Induced Cardiomyopathy
41. Intracellular Ca2+ Regulation
42. Structure-Function Relationships and Modifications of Cardiac Sarcoplasmic Reticulum Ca2+-Transport
43. Calenduloside E suppresses calcium overload by promoting the interaction between L-type calcium channels and Bcl2-associated athanogene 3 to alleviate myocardial ischemia/reperfusion injury
44. Functional sympatholysis in mouse skeletal muscle involves sarcoplasmic reticulum swelling in arterial smooth muscle cells
45. Effect of High Fat Diet and Endurance Training on the Gene Expression of Sarco/Endoplasmic Reticulum ATPase2 (SERCA2) and Ryanodine Receptor2 (RYR2) under Near-Thermoneutrality in Inguinal Adipose Tissue of Mice
46. Characterizing SERCA Function in Murine Skeletal Muscles after 35–37 Days of Spaceflight
47. Lockdown of mitochondrial Ca2+ extrusion and subsequent resveratrol treatment kill HeLa cells by Ca2+ overload
48. Characterizing SERCA function in murine skeletal muscles after 35-37 days of spaceflight
49. Complicated Burst-type Oscillations of Astrocytic Spontaneous Calcium Concentration
50. Sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) activity is required for V(D)J recombination
51. Muscle‐specific sirtuin 3 overexpression does not attenuate the pathological effects of high‐fat/high‐sucrose feeding but does enhance cardiac SERCA2a activity
52. Molecular noise filtering in the β-adrenergic signaling network by phospholamban pentamers
53. Mechanisms of Physical Fatigue and its Applications in Nutritional Interventions
54. Endoplasmic reticulum maintains ion homeostasis required for plasma membrane repair
55. Leishmania spp.-Infected Dogs Have Circulating Anti-Skeletal Muscle Autoantibodies Recognizing SERCA1
56. Efavirenz, atazanavir, and ritonavir disrupt sarcoplasmic reticulum Ca2+ homeostasis in skeletal muscles
57. Skeletal muscle non-shivering thermogenesis as an attractive strategy to combat obesity
58. Cardiac T-Tubule cBIN1-Microdomain, a Diagnostic Marker and Therapeutic Target of Heart Failure
59. Crosstalk among Calcium ATPases: PMCA, SERCA and SPCA in Mental Diseases
60. Illumination enhances the protein abundance of sarcoplasmic reticulum Ca2+-ATPases-like transporter in the ctenidium and whitish inner mantle of the giant clam, Tridacna squamosa, to augment exogenous Ca2+ uptake and shell formation, respectively
61. The transmembrane peptide DWORF activates SERCA2a via dual mechanisms
62. New role of TRPM4 channel in the cardiac excitation-contraction coupling in response to physiological and pathological hypertrophy in mouse
63. Molecular Noise-Filtering in the β -adrenergic Signaling Network by Phospholamban Pentamers
64. Functional maintenance of calcium store by ShcB adaptor protein in cerebellar Purkinje cells
65. The role of phospholamban and GSK3 in regulating rodent cardiac SERCA function
66. The transmembrane domain of DWORF activates SERCA directly; P15 and W22 residues are essential
67. Dietary nitrate does not alter cardiac function, calcium handling proteins, or SERCA activity in the left ventricle of healthy rats
68. Multi-species transcriptomics reveals evolutionary diversity in the mechanisms regulating shrimp tail muscle excitation-contraction coupling
69. Physical Activity-Dependent Regulation of Parathyroid Hormone and Calcium-Phosphorous Metabolism
70. Targeting Calcium Homeostasis in Myocardial Ischemia/Reperfusion Injury: An Overview of Regulatory Mechanisms and Therapeutic Reagents
71. SERCA2a: a key protein in the Ca2+ cycle of the heart failure
72. A review of pharmacological and pharmacokinetic properties of stachydrine
73. Sarco/Endoplasmic Reticulum Calcium ATPase Inhibitors: Beyond Anticancer Perspective
74. Primary Active Ca 2+ Transport Systems in Health and Disease
75. Intrauterine growth restriction affects diaphragm function in adult female and male mice
76. Sarcoplasmic reticulum and calcium signaling in muscle cells: Homeostasis and disease
77. Strain specific differences in muscle Ca2+ transport and mitochondrial electron transport proteins between FVB/N and C57BL/6J mice
78. Shark liver oil consumption decreases contractility in EDL muscle of trained rats
79. Mice with myocyte deletion of vitamin D receptor have sarcopenia and impaired muscle function
80. Probing the effects of nonannular lipid binding on the stability of the calcium pump SERCA
81. Histone deacetylase activity mediates thermal plasticity in zebrafish (Danio rerio)
82. Metabolic reprogramming involving glycolysis in the hibernating brown bear skeletal muscle
83. An Unbiased Proteomics Method to Assess the Maturation of Human Pluripotent Stem Cell–Derived Cardiomyocytes
84. A Complex Role for Calcium Signaling in Colorectal Cancer Development and Progression
85. Alternative role of noncoding RNAs: coding and noncoding properties
86. Pathogenesis and pathophysiology of heart failure with reduced ejection fraction: translation to human studies
87. Myocardial MMP-2 contributes to SERCA2a proteolysis during cardiac ischaemia–reperfusion injury
88. Non and Epigenetic Mechanisms in Regulation of Adaptive Thermogenesis in Skeletal Muscle
89. Ca 2+ signalling plays a role in celastrol‐mediated suppression of synovial fibroblasts of rheumatoid arthritis patients and experimental arthritis in rats
90. Ca 2+ homeostasis dysregulation in Alzheimer's disease: a focus on plasma membrane and cell organelles
91. Therapeutic implications of novel peptides targeting ER–mitochondria Ca2+-flux systems
92. Sarco/endoplasmic reticulum Ca2+ ATPase (SERCA) transcript abundance in Y-organs and ecdysteroid titer in hemolymph during a molting cycle of the Blue Crab, Callinectes sapidus
93. Inter-tissue communication in cancer cachexia
94. Gene Therapy for Heart Failure: New Perspectives
95. SNX17 produces anti-arrhythmic effects by preserving functional SERCA2a protein in myocardial infarction
96. “Sorting” SERCA2a: A novel therapeutic strategy in heart failure?
97. Probing the effects of nonannular lipid binding on the stability of the calcium pump SERCA
98. Exercise biology of neuromuscular disorders1
99. Soluble calcium-binding proteins (SCBPs) of the earthworm Lumbricus terrestris: possible role as relaxation factors in muscle
100. Over-expression of a cardiac-specific human dopamine D5 receptor mutation in mice causes a dilated cardiomyopathy through ROS over-generation by NADPH oxidase activation and Nrf2 degradation
101. Programmed Cell Death 5 Provides Negative Feedback on Cardiac Hypertrophy Through the Stabilization of Sarco/Endoplasmic Reticulum Ca 2+ -ATPase 2a Protein
102. ATP triggers a robust intracellular [Ca 2+ ]‐mediated signalling pathway in human synovial fibroblasts
103. Altered sarco(endo)plasmic reticulum calcium adenosine triphosphatase 2a content: Targets for heart failure therapy
104. The sarco(endo)plasmic reticulum calcium ATPase SCA-1 regulates the Caenorhabditis elegans nicotinic acetylcholine receptor ACR-16
105. New insights into SERCA2a gene therapy in heart failure: pay attention to the negative effects of B-type natriuretic peptides
106. Excitatory Neuronal Responses of Ca 2+ Transients in Interstitial Cells of Cajal in the Small Intestine
107. HDAC Inhibition Improves the Sarcoendoplasmic Reticulum Ca2+-ATPase Activity in Cardiac Myocytes
108. Uncovering the Importance of Selenium in Muscle Disease
109. Remarkable plasticity of Na+, K+-ATPase, Ca2+-ATPase and SERCA contributes to muscle disuse atrophy resistance in hibernating Daurian ground squirrels
110. PM 2.5 exposure in utero contributes to neonatal cardiac dysfunction in mice
111. β-Arrestin2 Improves Post–Myocardial Infarction Heart Failure via Sarco(endo)plasmic Reticulum Ca 2+ -ATPase–Dependent Positive Inotropy in Cardiomyocytes
112. Peptidyl‐Prolyl Isomerase 1 Regulates Ca 2+ Handling by Modulating Sarco(Endo)Plasmic Reticulum Calcium ATPase and Na 2+ /Ca 2+ Exchanger 1 Protein Levels and Function
113. MicroRNA-275 targets sarco/endoplasmic reticulum Ca2+ adenosine triphosphatase (SERCA) to control key functions in the mosquito gut
114. Deregulated Ca 2+ cycling underlies the development of arrhythmia and heart disease due to mutant obscurin
115. Interactions between small ankyrin 1 and sarcolipin coordinately regulate activity of the sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA1)
116. Transcriptomic Analysis of Calcium Remodeling in Colorectal Cancer
117. Regulation of Calcium Homeostasis by ER Redox: A Close-Up of the ER/Mitochondria Connection
118. Intracellular Ca2+ Regulation
119. Cannabinoid signalling inhibits sarcoplasmic Ca 2+ release and regulates excitation–contraction coupling in mammalian skeletal muscle
120. TECRL , a new life‐threatening inherited arrhythmia gene associated with overlapping clinical features of both LQTS and CPVT
121. Loss of myocardial retinoic acid receptor α induces diastolic dysfunction by promoting intracellular oxidative stress and calcium mishandling in adult mice
122. Sphingosine inhibits the sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) activity
123. Identification of Small Ankyrin 1 as a Novel Sarco(endo)plasmic Reticulum Ca2+-ATPase 1 (SERCA1) Regulatory Protein in Skeletal Muscle

View Options

Login options

Check if you access through your login credentials or your institution to get full access on this article.

Subscribe

Click on the button below to subscribe to Canadian Journal of Physiology and Pharmacology

Purchase options

Purchase this article to get full access to it.

Restore your content access

Enter your email address to restore your content access:

Note: This functionality works only for purchases done as a guest. If you already have an account, log in to access the content to which you are entitled.

View options

PDF

View PDF

Full Text

View Full Text

Figures

Tables

Media

Share Options

Share

Share the article link

Share on social media