Cyclocarya paliurus prevents high fat diet induced hyperlipidemia and obesity in Sprague–Dawley rats

Publication: Canadian Journal of Physiology and Pharmacology
13 April 2015

Abstract

Cyclocarya paliurus (CP; qing qian liu), which is used as an herbal tea in China, has been confirmed to have therapeutic effects on hyperlipidemia and obesity, and therefore it is widely consumed to prevent metabolic diseases such as hyperlipidemia and diabetes. In this study, we investigated the preventive effects of CP on obesity and hyperlipidemia, as well as the underlying mechanisms involved in intestinal secretion of apolipoprotein (apo) B48. Sprague–Dawley rats were fed a high-fat diet (HFD) and with or without various concentrations of an ethanol extract of CP (CPE; 2, 4, or 8 g·(kg body mass)–1) administered by gavage for 8 weeks. From the results we see that CPE dose-dependently blocked increases in body mass, and decreased food utilization as well as visceral fat mass. Decreased serum levels of total cholesterol, triglycerides, and low density lipoprotein cholesterol, and elevated levels of high density lipoprotein cholesterol, as well as lowered levels of total cholesterol and triglycerides in the liver were also noticed in CPE-treated rats. Magnetic resonance images indicated that the abnormal fat storage induced by the HFD was obviously suppressed by CPE. In addition, ELISA analysis showed reduced fasting serum apoB48 in the CPE treatment groups. Based on the above results, CPE shows a promising preventive effect on obesity and hyperlipidemia, partially through suppressing intestinal apoB48 overproduction.

Résumé

Il a été confirmé que, sous forme de tisane en Chine, Cyclocarya paliurus (CP ; « qing qian liu ») possède des effets thérapeutiques sur l’hyperlipidémie et l’obésité. Par conséquent, cette plante est largement consommée en vue de prévenir des troubles métaboliques comme l’hyperlipidémie et le diabète. Dans le cadre de la présente étude, nous avons tenté d’étudier l’effet préventif de CP sur l’obésité et l’hyperlipidémie, ainsi que les mécanismes sous-jacents reliés à la sécrétion intestinale d’apolipoprotéine B48 (apoB48). Un régime à haute teneur en matières grasses a été administré par gavage à des rats Sprague Dawley pendant 8 semaines, avec ou sans extrait de CP dans l’éthanol (CPE) à diverses concentrations (2, 4 et 8 g·(kg de masse corporelle)–1). Les résultats indiquent que l’administration de CPE a inhibé le gain de poids et réduit l’ingestion de nourriture et la masse de tissu adipeux viscéral, et ce, de façon proportionnelle à la dose. Chez les rats traités par le CPE, nous avons aussi noté une diminution des taux sériques de cholestérol total, de triglycérides et de cholestérol-LDL accompagnée d’une augmentation des taux de cholestérol-HDL ainsi qu’une diminution des taux hépatiques de cholestérol total et de triglycérides. L’imagerie par résonance magnétique (IRM) indiquait que l’accumulation anormale de matières grasses entraînée par le régime à haute teneur en matières grasses était supprimée de façon évidente par l’administration de CPE. De plus, une analyse par ÉLISA a montré une réduction des taux sériques d’apoB48 à jeun dans le groupe CPE. Ces résultats indiquent que l’administration de CPE a un effet préventif prometteur sur l’obésité et l’hyperlipidémie, et ce, en partie par la suppression de la surproduction intestinale d’apoB48. [Traduit par la Rédaction]

Get full access to this article

View all available purchase options and get full access to this article.

References

Alwan, A. 2011. Global status report on noncommunicable diseases 2010. World Health Organization. [Available from http://www.who.int/nmh/publications/ncd_report2010/en/].
Aydin S., Aksoy A., Aydin S., Kalayci M., Yilmaz M., Kuloglu T., et al. 2014. Today’s and yesterday’s of pathophysiology: biochemistry of metabolic syndrome and animal models. Nutrition, 30(1): 1–9.
Bays H.E., González-Campoy J.M., Bray G.A., Kitabchi A.E., Bergman D.A., Schorr A.B., et al. 2008. Pathogenic potential of adipose tissue and metabolic consequences of adipocyte hypertrophy and increased visceral adiposity. Expert Rev. Cardiovasc. Ther. 6(3): 343–368.
Chatterjee S.S. 2012. Holistic psychopharmacology and promiscuous plants and principles of Ayurveda. Am. J. Plant Sci. 3(7): 1015–1021.
Chen H.C. and Farese R.V. 2002. Determination of adipocyte size by computer image analysis. J. Lipid Res. 43(6): 986–989.
Chow H.S., Cai Y., Hakim I.A., Crowell J.A., Shahi F., Brooks C.A., et al. 2003. Pharmacokinetics and safety of green tea polyphenols after multiple-dose administration of epigallocatechin gallate and polyphenon E in healthy individuals. Clin. Cancer Res. 9(9): 3312–3319.
Cooper R., Morré D.J., and Morré D.M. 2005. Medicinal benefits of green tea: Part I. Review of noncancer health benefits. J. Altern. Complement. Med. 11(3): 521–528.
Du H., You J.S., Zhao X., Park J.Y., Kim S.H., and Chang K.J. 2010. Antiobesity and hypolipidemic effects of lotus leaf hot water extract with taurine supplementation in rats fed a high fat diet. J. Biomed. Sci. 17 (Suppl. 1): S42.
Finelli C., Sommella L., Gioia S., La Sala N., and Tarantino G. 2013. Should visceral fat be reduced to increase longevity? Ageing Res. Rev. 12(4): 996–1004.
Gao Y. and Xiao Y. 2002. Effect of hawthorn and hawthorn flavonoids extract on rats with hyperlipidemia. Chin. J. Food Hygiene, 14(3): 14–16.
Ge X., Chen T.T., Cai J.Y., Huang M.Q., Xu W.F., and Wang J.R. 2011. Study on the antioxidant activity of Cyclocarya paliurus polysaccharides. J. Chin. Inst. Food Sci. Technol. 11(5): 59–64.
Harp J.B. 1998. An assessment of the efficacy and safety of orlistat for the long-term management of obesity. J. Nutr. Biochem. 9(9): 516–521.
Hauptman J., Jeunet F.S., and Hartmann D. 1992. Initial studies in humans with the novel gastrointestinal lipase inhibitor Ro 18-0647 (tetrahydrolipstatin). Am. J. Clin. Nutr. 55(1): 309S–313S.
Hotamisligil G.S. 2006. Inflammation and metabolic disorders. Nature, 444(7121): 860–867.
Huang J.Y., Lou L.Y., and Xu P. 1986. Pharmacological studies of Cyclocarya paliurus. Tradit. Chin. Med. J. 11(11): 63–63.
Huang W. and Liu R. 2012. Reasearch progress of apolipoprotein B48. Chin. J. Arterioscl. 20(7): 668–672.
Huang W., Liu R., Ou Y., Li X., Qiang O., Yu T., and Tang C.W. 2013. Octreotide promotes weight loss via suppression of intestinal MTP and apoB48 expression in diet-induced obesity rats. Nutrition, 29(10): 1259–1265.
Institute of Laboratory Animal Resources. 1996. Guide for the care and use of laboratory animals. National Academic Press.
Jiang C., Yao N., Wang Q., Zhang J., Sun Y., Xiao N., et al. 2014. Cyclocarya paliurus extract modulates adipokine expression and improves insulin sensitivity by inhibition of inflammation in mice. J. Ethnopharmacol. 153(2): 344–351.
Klop B., Elte J.W., and Cabezas M.C. 2013. Dyslipidemia in obesity: mechanisms and potential targets. Nutrients, 5(4): 1218–1240.
Kurihara H., Asami S., Shibata H., Fukami H., and Tanaka T. 2003a. Hypolipemic effect of Cyclocarya paliurus (Batal.) Iljinskaja in lipid-loaded mice. Biol. Pharm. Bull. 26(3): 383–385.
Kurihara H., Fukami H., Kusumoto A., Toyoda Y., Shibata H., Matsui Y., et al. 2003b. Hypoglycemic action of Cyclocarya paliurus (Batal.) Iljinskaja in normal and diabetic mice. Biosci. Biotechnol. Biochem. 67(4): 877–880.
Leng R.X. 1994. Basic theoretical research and clinical observation of Cyclocarya paliurus. Jiangxi J. Tradit. Chin. Med. 25(2): 64–65.
Li G.L., Zhang H., and Xu Y.Y. 2013. Lipid-lowering strategies for dyslipidemia. China Pract. Med. 8(19): 204–205.
Lin J.-K. and Lin-Shiau S.-Y. 2006. Mechanisms of hypolipidemic and anti-obesity effects of tea and tea polyphenols. Mol. Nutr. Food Res. 50(2): 211–217.
Ma Y., Jiang C., Yao N., Li Y., Wang Q., Fang S., et al. 2015. Antihyperlipidemic effect of Cyclocarya paliurus (Batal.) Iljinskaja extract and inhibition of apolipoprotein B48 overproduction in hyperlipidemic mice. J. Ethnopharmacol. 166: 286–296.
Morgan K., Uyuni A., Nandgiri G., Mao L., Castaneda L., Kathirvel E., et al. 2008. Altered expression of transcription factors and genes regulating lipogenesis in liver and adipose tissue of mice with high fat diet-induced obesity and nonalcoholic fatty liver disease. Eur. J. Gastroenterol. Hepatol. 20(9): 843–854.
Nzekwu M., Ball G., Jetha M., Beaulieu C., and Proctor S. 2007. Apolipoprotein B48: a novel marker of metabolic risk in overweight children? Biochem. Soc. Trans. 35(3): 484–486.
Oda N., Imamura S., Fujita T., Uchida Y., Inagaki K., Kakizawa H., et al. 2008. The ratio of leptin to adiponectin can be used as an index of insulin resistance. Metabolism, 57(2): 268–273.
Pal S., Semorine K., Watts G.F., and Mamo J. 2003. Identification of lipoproteins of intestinal origin in human atherosclerotic plaque. Clin. Chem. Lab. Med. 41(6): 792–795.
Pang X.Y., Yao M.H., Lu Y.Q., and Gong Q.Y. 2002. Effect of soy isoflavones on malondialdehyde and superoxide dismutase of blood and liver in hypercholesterolemia rats. Chin. J. New Drugs Clin. Rem. 21(5): 257–261.
Rahmouni K., Correia M.L., Haynes W.G., and Mark A.L. 2005. Obesity-associated hypertension: new insights into mechanisms. Hypertension, 45(1): 9–14.
Unger R.H. 2002. Lipotoxic diseases. Annu. Rev. Med. 53(1): 319–336.
Wang K.-Q. and Cao Y. 2007. Research progress in the chemical constituents and pharmacologic activities of Cyclocarya paliurus (Batal.) Iljinshaja. Heilongjiang Med. J. 31(8): 577–579.
Wang Q., Jiang C., Fang S., Wang J., Ji Y., Shang X., et al. 2013. Antihyperglycemic, antihyperlipidemic and antioxidant effects of ethanol and aqueous extracts of Cyclocarya paliurus leaves in type 2 diabetic rats. J. Ethnopharmacol. 150(3): 1119–1127.
Xie M.Y. and Li L. 2001. Review in studies on chemical constituents and bioactivities of Cyclocarya paliurus. Chin. Tradit. Herb. Drugs, 32(4): 365–366.
Yang L., Chen J.-H., Xu T., Zhou A.-S., and Yang H.-K. 2012. Rice protein improves oxidative stress by regulating glutathione metabolism and attenuating oxidative damage to lipids and proteins in rats. Life Sci. 91(11–12): 389–394.
Zhou X.H., Dong Y., Xiao X., Wang Y., Xu Y., Xu B., et al. 2011. A 90-day toxicology study of high-amylose transgenic rice grain in Sprague-Dawley rats. Food Chem. Toxicol. 49(12): 3112–3118.

Information & Authors

Information

Published In

cover image Canadian Journal of Physiology and Pharmacology
Canadian Journal of Physiology and Pharmacology
Volume 93Number 8August 2015
Pages: 677 - 686

History

Received: 26 November 2014
Accepted: 1 April 2015
Accepted manuscript online: 13 April 2015
Version of record online: 13 April 2015

Permissions

Request permissions for this article.

Key Words

  1. Cyclocarya paliurus
  2. hyperlipidemia
  3. obesity
  4. apoB48
  5. MRI
  6. visceral fat
  7. antihyperlipidemic

Mots-clés

  1. Cyclocarya paliurus
  2. hyperlipidémie
  3. obésité
  4. apoB48
  5. IRM
  6. tissu adipeux viscéral
  7. antihyperlipidémique

Authors

Affiliations

Xiaoming Yao*
Clinical Laboratory, Jiangsu Province Hospital on Integration of Chinese and Western Medicine, Nanjing 210028, Jiangsu Province, P.R. China.
Laboratory of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, No. 100, Shizi Street, Hongshan Road, Nanjing 210028, Jiangsu Province, P.R. China.
Zi Lin*
Department of Natural Medicinal Chemistry & State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24, Tongjiaxiang, Gulou District, Nanjing 210009, Jiangsu Province, P.R. China.
Laboratory of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, No. 100, Shizi Street, Hongshan Road, Nanjing 210028, Jiangsu Province, P.R. China.
Cuihua Jiang
Laboratory of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, No. 100, Shizi Street, Hongshan Road, Nanjing 210028, Jiangsu Province, P.R. China.
Meng Gao
Laboratory of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, No. 100, Shizi Street, Hongshan Road, Nanjing 210028, Jiangsu Province, P.R. China.
Qingqing Wang
Department of Natural Medicinal Chemistry & State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24, Tongjiaxiang, Gulou District, Nanjing 210009, Jiangsu Province, P.R. China.
Laboratory of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, No. 100, Shizi Street, Hongshan Road, Nanjing 210028, Jiangsu Province, P.R. China.
Nan Yao
Laboratory of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, No. 100, Shizi Street, Hongshan Road, Nanjing 210028, Jiangsu Province, P.R. China.
Yonglan Ma
Department of Natural Medicinal Chemistry & State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24, Tongjiaxiang, Gulou District, Nanjing 210009, Jiangsu Province, P.R. China.
Laboratory of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, No. 100, Shizi Street, Hongshan Road, Nanjing 210028, Jiangsu Province, P.R. China.
Yue Li
Laboratory of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, No. 100, Shizi Street, Hongshan Road, Nanjing 210028, Jiangsu Province, P.R. China.
Shengzuo Fang
College of Forest Resources and Environment, Nanjing Forestry University, Nanjing 210042, Jiangsu Province, P.R. China.
Xulan Shang
College of Forest Resources and Environment, Nanjing Forestry University, Nanjing 210042, Jiangsu Province, P.R. China.
Yicheng Ni
Laboratory of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, No. 100, Shizi Street, Hongshan Road, Nanjing 210028, Jiangsu Province, P.R. China.
Theragnostic Laboratory, Campus Gasthuisberg, KU Leuven, 3000 Leuven, Belgium.
Laboratory of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, No. 100, Shizi Street, Hongshan Road, Nanjing 210028, Jiangsu Province, P.R. China.
Zhiqi Yin
Department of Natural Medicinal Chemistry & State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24, Tongjiaxiang, Gulou District, Nanjing 210009, Jiangsu Province, P.R. China.

Notes

*
These authors contributed to the work equally and should be regarded as co-first authors.

Metrics & Citations

Metrics

Other Metrics

Citations

Cite As

Export Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

1. Triterpenoids from Cyclocarya paliurus : structure, biosynthesis, biological activities
2. Comprehensive Review on Anti-Obesity Effects of Plant-Derived Compounds: Evidence from 3T3-L1 Adipocytes and High-Fat Diet Models
3. Effects of Foliar Dressing with Chemical Nano-Selenum and Na2SeO3 on the Antioxidant System and Accumulation of Se and Bioactive Components in Cyclocarya paliurus (Sweet Tea Tree)
4. Cyclocarya paliurus leaves alleviate high-sucrose diet-induced obesity by improving intestinal metabolic disorders
5. Toxicokinetic study of scandium oxide in rats
6. Physiological and biochemical changes in leaf abscission of Cyclocarya paliurus stem segments in vitro
7. Simulated organic–inorganic nitrogen deposition changes the growth rate, leaf stoichiometry, and phenolic content of Cyclocarya paliurus
8. Genome-Wide Identification and Expression Analysis of Salt Tolerance-Associated WRKY Family Genes in Cyclocarya paliurus
9. Ethnobotanical Perspective in the Management of Obesity: An Updated Review
10. The phytochemicals and health benefits of Cyclocarya paliurus (Batalin) Iljinskaja
11. Investigating the induction of polyphenol biosynthesis in the cultured Cycolocarya paliurus cells and the stimulatory mechanism of co-induction with 5-aminolevulinic acid and salicylic acid
12. Genome-wide identification of bHLH transcription factors and their response to salt stress in Cyclocarya paliurus
13. Effect of isgin ( Rheum ribes L.) on biochemical parameters, antioxidant activity and DNA damage in rats with obesity induced with high-calorie diet
14. Two new triterpenoid glycosides from leaves of Cyclocarya paliurus
15. Development of suspension culture technology and hormone effects on anthocyanin biosynthesis for red Cyclocarya paliurus cells
16. Nitric Oxide Improves Salt Tolerance of Cyclocarya paliurus by Regulating Endogenous Glutathione Level and Antioxidant Capacity
17. Obez Sıçanlarda Selenyum ve N-Asetil Sistein’in Fertilite/ İnfertilite ve Karaciğer Üzerine Etkisi
18. Identification and Expression Analysis of R2R3-MYB Family Genes Associated with Salt Tolerance in Cyclocarya paliurus
19. The Leaves of Cyclocarya paliurus : A Functional Tea with Preventive and Therapeutic Potential of Type 2 Diabetes
20. Potential Role of Natural Plant Medicine Cyclocarya paliurus in the Treatment of Type 2 Diabetes Mellitus
21. Cytotoxic triterpenoid glycosides from leaves of Cyclocarya paliurus
22. Hydrogen sulfide alleviates salinity stress in Cyclocarya paliurus by maintaining chlorophyll fluorescence and regulating nitric oxide level and antioxidant capacity
23. Hydroethanolic Extract of A. officinarum Hance Ameliorates Hypertension and Causes Diuresis in Obesogenic Feed-Fed Rat Model
24. Effects of cyclocarya paliurus flavonoid extract in non-alcoholic steatohepatitis mice: Intermeshing network pharmacology and in vivo pharmacological evaluation
25. Modulatory effect of Cyclocarya paliurus flavonoids on the intestinal microbiota and liver clock genes of circadian rhythm disorder mice model
26. Effects of Cyclocarya paliurus Aqueous and Ethanol Extracts on Glucolipid Metabolism and the Underlying Mechanisms: A Meta-Analysis and Systematic Review
27. The biological role of arachidonic acid 12-lipoxygenase (ALOX12) in various human diseases
28. Variation in radial growth and wood density of Cyclocarya paliurus across its natural distribution
29. Cyclocarya paliurus extract attenuates hepatic lipid deposition in HepG2 cells by the lipophagy pathway
30. Protective effects of p-coumaric acid against oxidant and hyperlipidemia-an in vitro and in vivo evaluation
31. Cyclocarya paliurus Leaves Tea Improves Dyslipidemia in Diabetic Mice: A Lipidomics-Based Network Pharmacology Study
32. Investigating the Molecular Mechanism of Aqueous Extract of Cyclocarya paliurus on Ameliorating Diabetes by Transcriptome Profiling
33. Influence of Container Type and Growth Medium on Seedling Growth and Root Morphology of Cyclocarya paliurus during Nursery Culture
34. Late Miocene Cyclocarya (Juglandaceae) from Southwest China and Its Biogeographic Implications
35. Isolation, structure, and bioactivities of polysaccharides from Cyclocarya paliurus (Batal.) Iljinskaja
36. The chloroform extract of Cyclocarya paliurus attenuates high-fat diet induced non-alcoholic hepatic steatosis in Sprague Dawley rats

View Options

Login options

Check if you access through your login credentials or your institution to get full access on this article.

Subscribe

Click on the button below to subscribe to Canadian Journal of Physiology and Pharmacology

Purchase options

Purchase this article to get full access to it.

Restore your content access

Enter your email address to restore your content access:

Note: This functionality works only for purchases done as a guest. If you already have an account, log in to access the content to which you are entitled.

View options

PDF

View PDF

Full Text

View Full Text

Figures

Tables

Media

Share Options

Share

Share the article link

Share on social media