Cookies Notification

We use cookies to improve your website experience. To learn about our use of cookies and how you can manage your cookie settings, please see our Cookie Policy.
×

Hydrogen gas: from clinical medicine to an emerging ergogenic molecule for sports athletes

Publication: Canadian Journal of Physiology and Pharmacology
10 April 2019

Abstract

H2 has been clinically demonstrated to provide antioxidant and anti-inflammatory effects, which makes it an attractive agent in exercise medicine. Although exercise provides a multiplicity of benefits including decreased risk of disease, it can also have detrimental effects. For example, chronic high-intensity exercise in elite athletes, or sporadic bouts of exercise (i.e., noxious exercise) in untrained individuals, result in similar pathological factors such as inflammation, oxidation, and cellular damage that arise from and result in disease. Paradoxically, exercise-induced pro-inflammatory cytokines and reactive oxygen species largely mediate the benefits of exercise. Ingestion of conventional antioxidants and anti-inflammatories often impairs exercise-induced training adaptations. Disease and noxious forms of exercise promote redox dysregulation and chronic inflammation, changes that are mitigated by H2 administration. Beneficial exercise and H2 administration promote cytoprotective hormesis, mitochondrial biogenesis, ATP production, increased NAD+/NADH ratio, cytoprotective phase II enzymes, heat-shock proteins, sirtuins, etc. We review the biomedical effects of exercise and those of H2, and we propose that hydrogen may act as an exercise mimetic and redox adaptogen, potentiate the benefits from beneficial exercise, and reduce the harm from noxious exercise. However, more research is warranted to elucidate the potential ergogenic and therapeutic effects of H2 in exercise medicine.

Graphical Abstract

Résumé

Des données cliniques ont montré que l’H2 a des effets antioxydants et anti-inflammatoires, ce qui en fait un agent attrayant en médecine de l’exercice physique. Bien que l’exercice physique offre une multitude de bienfaits, y compris une diminution du risque de maladie, il peut aussi avoir des effets délétères. Par exemple, les effets de l’exercice physique de haute intensité de manière prolongée chez les athlètes d’élite, ou de pointes sporadiques d’exercice physique — c’est-à-dire de l’exercice physique nocif — chez des personnes non entraînées, se résument à des facteurs pathologiques similaires comme l’inflammation, l’oxydation et des dommages cellulaires, lesquels entraînent des maladies ou en sont le résultat. Paradoxalement, les cytokines pro-inflammatoires et les dérivés réactifs de l’oxygène produits pendant l’exercice physique contribuent largement à la médiation des bienfaits de l’exercice physique. En outre, l’ingestion d’antioxydants et d’anti-inflammatoires classiques nuit souvent aux modes d’action d’adaptation à l’entraînement mis en jeu pendant l’exercice physique. De fait, la maladie et les formes nocives d’exercice physique favorisent le dérèglement redox et l’inflammation chronique, changements pourtant atténués par l’administration d’H2. Effectivement, l’exercice physique bénéfique et l’administration d’H2 favorisent l’hormèse cytoprotectrice, la biogenèse mitochondriale, la production d’ATP, l’augmentation du ratio NAD+/NADH, les enzymes cytoprotecteurs de phase II, les protéines de choc thermique, les sirtuines, etc. En résumé, nous offrons une synthèse des effets biomédicaux de l’exercice physique et de ceux de l’H2, et nous proposons que l’hydrogène puisse agir en tant que mimétique de l’exercice physique et d’adaptogène redox, potentialiser les bienfaits de l’exercice physique bénéfique et atténuer les dommages causés par l’exercice physique nocif. Il serait cependant justifié de procéder à plus de recherches en vue d’élucider les effets ergogènes et thérapeutiques de l’H2 en médecine de l’exercice physique. [Traduit par la Rédaction]

Get full access to this article

View all available purchase options and get full access to this article.

References

Aoki K., Nakao A., Adachi T., Matsui Y., and Miyakawa S. 2012. Pilot study: Effects of drinking hydrogen-rich water on muscle fatigue caused by acute exercise in elite athletes. Med. Gas Res. 2(1): 12.
Ara J., Fadriquela A., Ahmed M.F., Bajgai J., Sajo M.E.J., Lee S.P., et al. 2018. Hydrogen Water Drinking Exerts Antifatigue Effects in Chronic Forced Swimming Mice via Antioxidative and Anti-Inflammatory Activities. BioMed Res. Int. 2018: 2571269.
Balaban R.S., Nemoto S., and Finkel T. 2005. Mitochondria, oxidants, and aging. Cell, 120(4): 483–495.
Bentley, D.J., Ackerman, J., Clifford, T., and Slattery, K.S. 2015. Acute and Chronic Effects of Antioxidant Supplementation on Exercise Performance. In Antioxidants in Sport Nutrition. Edited by M. Lamprecht. Boca Raton (FL).
Braakhuis A.J., Hopkins W.G., and Lowe T.E. 2013. Effects of dietary antioxidants on training and performance in female runners. Eur. J. Sport Sci. 14(2): 160–168.
Brown G.C. and Neher J.J. 2010. Inflammatory neurodegeneration and mechanisms of microglial killing of neurons. Mol. Neurobiol. 41(2–3): 242–247.
Case E.M. and Haldane J.B. 1941. Human physiology under high pressure: I. Effects of Nitrogen, Carbon Dioxide, and Cold. J. Hyg. 41(3): 225–249.
Chen X., Zhai X., Shi J., Liu W.W., Tao H., Sun X., and Kang Z. 2013. Lactulose Mediates Suppression of Dextran Sodium Sulfate-Induced Colon Inflammation by Increasing Hydrogen Production. Dig. Dis. Sci. 58: 1560–1568.
Clements W.T., Lee S.R., and Bloomer R.J. 2014. Nitrate ingestion: a review of the health and physical performance effects. Nutrients, 6(11): 5224–5264.
Cui Y., Zhang H., Ji M., Jia M., Chen H., Yang J., and Duan M. 2014. Hydrogen-rich saline attenuates neuronal ischemia-reperfusion injury by protecting mitochondrial function in rats. J. Surg. Res. 192: 564–572.
D’Autréaux B. and Toledano M.B. 2007. ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis. Nat. Rev. Mol. Cell Biol. 8(10): 813–824.
Davies K.J., Quintanilha A.T., Brooks G.A., and Packer L. 1982. Free radicals and tissue damage produced by exercise. Biochem. Biophys. Res. Commun. 107(4): 1198–1205.
Dickinson B.C. and Chang C.J. 2011. Chemistry and biology of reactive oxygen species in signaling or stress responses. Nat. Chem. Biol. 7(8): 504–511.
Dixon B.J., Tang J., and Zhang J.H. 2013. The evolution of molecular hydrogen: a noteworthy potential therapy with clinical significance. Med. Gas Res. 3(1): 10.
Dohi K., Kraemer B.C., Erickson M.A., McMillan P.J., Kovac A., Flachbartova Z., et al. 2014. Molecular Hydrogen in Drinking Water Protects against Neurodegenerative Changes Induced by Traumatic Brain Injury. PLoS One, 9(9): e108034.
Dole M., Wilson F.R., and Fife W.P. 1975. Hyperbaric hydrogen therapy: a possible treatment for cancer. Science, 190(4210): 152–154.
Dougherty J.H. Jr. 1976. Use of H2 as an inert gas during diving: pulmonary function during H2-O2 breathing at 7.06 ATA. Aviat. Space Environ. Med. 47(6): 618–626.
Drid, P., Ostojic, S.M., Stojanovic, M., and Trivic, T. 2013. Hydrogen-Rich Water in Judo Training. Psycho-Physiol. Spiritual Ethical Aspects, 4: 129.
Drid P., Stojanovic M.D., Trivic T., and Ostojic S.M. 2016. Molecular Hydrogen Affected Post-Exercise Recovery in Judo Athletes: 3820 Board# 259 June 4, 9:30 AM–11:00 AM. Med. Sci. Sports Exerc. 48(5): 1071.
Durand M.J. and Gutterman D.D. 2014. Exercise and vascular function: how much is too much? Can. J. Physiol. Pharmacol. 92(7): 551–557.
Eckermann J.M., Chen W., Jadhav V., Hsu F.P., Colohan A.R., Tang J., and Zhang J.H. 2011. Hydrogen is neuroprotective against surgically induced brain injury. Med. Gas Res. 1(1): 7.
Evans W.J. 2000. Vitamin E, vitamin C, and exercise. Am. J. Clin. Nutr. 72(S2): 647S–652S.
Feleciano D.R. and Kirstein J. 2016. Collapse of redox homeostasis during aging and stress. Mol. Cell. Oncol. 3(2): e1091060.
Feng R., Cai M., Wang X., Zhang J., and Tian Z. 2018. Early Aerobic Exercise Combined with Hydrogen-Rich Saline as Preconditioning Protects Myocardial Injury Induced by Acute Myocardial Infarction in Rats. Appl. Biochem. Biotechnol. 187: 663–676.
Finkel T. 2011. Signal transduction by reactive oxygen species. J. Cell Biol. 194(1): 7–15.
Fisher-Wellman K. and Bloomer R.J. 2009. Acute exercise and oxidative stress: a 30 year history. Dyn. Med. 8: 1.
Friess S.L., Hudak W.V., and Boyer R.D. 1978. Toxicology of hydrogen-containing diving environments. I. Antagonism of acute CO2 effects in the rat by elevated partial pressures of H2 gas. Toxicol. Appl. Pharmacol. 46(3): 717–725.
Gao Q., Song H., Wang X.T., Liang Y., Xi Y.J., Gao Y., et al. 2017. Molecular hydrogen increases resilience to stress in mice. Sci. Rep. 7(1): 9625.
Gleeson M. 2007. Immune function in sport and exercise. J. Appl. Physiol. 103(2): 693–699.
Gleeson M., Nieman D.C., and Pedersen B.K. 2004. Exercise, nutrition and immune function. J. Sports Sci. 22(1): 115–125.
Gliemann L., Schmidt J.F., Olesen J., Biensø R.S., Peronard S.L., Grandjean S.U., et al. 2013. Resveratrol blunts the positive effects of exercise training on cardiovascular health in aged men. J. Physiol. 591(20): 5047–5059.
Gliemann L., Olesen J., Biensø R.S., Schmidt J.F., Akerstrom T., Nyberg M., et al. 2014. Resveratrol modulates the angiogenic response to exercise training in skeletal muscles of aged men. Am. J. Physiol. Heart Circ. Physiol. 307(8): H1111–H1119.
Gomes E.C., Silva A.N., and de Oliveira M.R. 2012. Oxidants, antioxidants, and the beneficial roles of exercise-induced production of reactive species. Oxid. Med. Cell Longev. 2012: 756132.
Gomez-Cabrera M.C., Domenech E., Romagnoli M., Arduini A., Borras C., Pallardo F.V., et al. 2008. Oral administration of vitamin C decreases muscle mitochondrial biogenesis and hampers training-induced adaptations in endurance performance. Am. J. Clin. Nutr. 87(1): 142–149.
Gomez-Pinilla F., Zhuang Y., Feng J., Ying Z., and Fan G. 2011. Exercise impacts brain-derived neurotrophic factor plasticity by engaging mechanisms of epigenetic regulation. Eur. J. Neurosci. 33(3): 383–390.
Halliwell, B., and Gutteridge, J. 2015. Free radicals in biology and medicine. 5th edition, Oxford University Press, U.S.A.
Handschin C. and Spiegelman B.M. 2008. The role of exercise and PGC1alpha in inflammation and chronic disease. Nature, 454(7203): 463–469.
Harman D. 2009. About “Origin and evolution of the free radical theory of aging: a brief personal history, 1954-2009”. Biogerontology, 10(6): 783.
Hayashida K., Sano M., Ohsawa I., Shinmura K., Tamaki K., Kimura K., et al. 2008. Inhalation of hydrogen gas reduces infarct size in the rat model of myocardial ischemia-reperfusion injury. J. Card. Fail. 14(7): S168–S168.
Hirayama M., Ito M., Minato T., Yoritaka A., LeBaron T.W., and Ohno K. 2018. Inhalation of hydrogen gas elevates urinary 8-hydroxy-2′-deoxyguanine in Parkinson’s disease. Med. Gas Res. 8(4): 144–149.
Hotamisligil G.S. 2006. Inflammation and metabolic disorders. Nature, 444(7121): 860–867.
Ichihara M., Sobue S., Ito M., Ito M., Hirayama M., and Ohno K. 2015. Beneficial biological effects and the underlying mechanisms of molecular hydrogen - comprehensive review of 321 original articles. Med. Gas Res. 5: 12.
Ishibashi T., Sato B., Rikitake M., Seo T., Kurokawa R., Hara Y., et al. 2012. Consumption of water containing a high concentration of molecular hydrogen reduces oxidative stress and disease activity in patients with rheumatoid arthritis: an open-label pilot study. Med. Gas Res. 2(1): 27.
Ito M., Ibi T., Sahashi K., Ichihara M., and Ohno K. 2011. Open-label trial and randomized, double-blind, placebo-controlled, crossover trial of hydrogen-enriched water for mitochondrial and inflammatory myopathies. Med. Gas Res. 1(1): 24.
Ito M., Hirayama M., Yamai K., Goto S., Ichihara M., and Ohno K. 2012. Drinking hydrogen water and intermittent hydrogen gas exposure, but not lactulose or continuous hydrogen gas exposure, prevent 6-hydorxydopamine-induced Parkinson’s disease in rats. Med. Gas Res. 2(1): 15.
Jones D.P. 2008. Radical-free biology of oxidative stress. Am. J. Physiol.-Cell Physiol. 295(4): C849–C868.
Juarez J.C., Manuia M., Burnett M.E., Betancourt O., Boivin B., Shaw D.E., et al. 2008. Superoxide dismutase 1 (SOD1) is essential for H2O2-mediated oxidation and inactivation of phosphatases in growth factor signaling. Proc. Natl. Acad. Sci. U. S. A. 105(20): 7147–7152.
Kajiya M., Sato K., Silva M.J., Ouhara K., Do P.M., Shanmugam K.T., and Kawai T. 2009. Hydrogen from intestinal bacteria is protective for Concanavalin A-induced hepatitis. Biochem. Biophys. Res. Commun. 386(2): 316–321.
Kajiyama S., Hasegawa G., Asano M., Hosoda H., Fukui M., Nakamura N., et al. 2008. Supplementation of hydrogen-rich water improves lipid and glucose metabolism in patients with type 2 diabetes or impaired glucose tolerance. Nutr. Res. 28: 137–143.
Kato S., Saitoh Y., Iwai K., and Miwa N. 2012. Hydrogen-rich electrolyzed warm water represses wrinkle formation against UVA ray together with type-I collagen production and oxidative-stress diminishment in fibroblasts and cell-injury prevention in keratinocytes. J. Photochem. Photobiol. B: Biol. 106: 24–33.
Katsumata, Y., Sano, F., Abe, T., Tamura, T., Fujisawa, T., Shiraishi, Y. et al. 2017. The Effects of Hydrogen Gas Inhalation on Adverse Left Ventricular Remodeling After Percutaneous Coronary Intervention for ST-Elevated Myocardial Infarction-First Pilot Study in Humans. Circ J.
Kawamura T., Gando Y., Takahashi M., Hara R., Suzuki K., and Muraoka I. 2016. Effects of hydrogen bathing on exercise-induced oxidative stress and delayed-onset muscle soreness. Jpn J. Phys. Fitness Sports Med. 65(3): 297–305.
Kawamura T., Suzuki K., Takahashi M., Tomari M., Hara R., Gando Y., et al. 2018. Involvement of Neutrophil Dynamics and Function in Exercise-Induced Muscle Damage and Delayed-Onset Muscle Soreness: Effect of Hydrogen Bath. Antioxidants, 7(10): 127.
Koyama K., Tanaka Y., Saihara Y., Ando D., Goto Y., and Katayama A. 2008. Effect of hydrogen saturated alkaline electrolyzed water on urinary oxidative stress markers after an acute exercise: A randomized controlled trial. Anti-aging Med. 4: 117–122.
Kura B., Bagchi A.K., Singal P.K., Barancik M., LeBaron T.W., Valachova K., et al. 2018. Molecular hydrogen (H2): Potential in mitigating oxidative stress-induced cardiotoxicity. Can. J. Physiol. Pharmacol. 97: 287–292.
Kura, B., Kalocayova, B., LeBaron, T.W., Frimmel, K., Buday, J., Surovy, J., and Slezak, J. 2019. Regulation of microRNAs by molecular hydrogen contributes to the prevention of radiation-induced damage in the rat myocardium. Mol. Cell. Biochem. 1–12.
Lafay S., Jan C., Nardon K., Lemaire B., Ibarra A., Roller M., et al. 2009. Grape extract improves antioxidant status and physical performance in elite male athletes. J. Sports Sci. Med. 8(3): 468–480.
LeBaron T.W., Kura B., Kalocayova B., Tribulova N., and Slezak J. 2019. A new approach for the prevention and treatment of cardiovascular disorders. Molecular hydrogen significantly reduces the effects of oxidative stress. Molecules. 24(11): 2076.
LeBaron T.W., Larson A., Ohta S., Mikami T., Barlow J., Bulloch J., and DeBeliso M. 2019. Acute Supplementation with Molecular Hydrogen Benefits Submaximal Exercise Indices. Randomized, Double-blinded, Placebo-controlled Crossover Pilot Study. J. Lifestyle Med. 9(1): 36–43.
Levinger I., Shaw C.S., Stepto N.K., Cassar S., McAinch A.J., Cheetham C., and Maiorana A.J. 2015. What Doesn’t Kill You Makes You Fitter: A Systematic Review of High-Intensity Interval Exercise for Patients with Cardiovascular and Metabolic Diseases. Clin. Med. Insights Cardiol. 9: 53–63.
Li Q., Kato S., Matsuoka D., Tanaka H., and Miwa N. 2013. Hydrogen water intake via tube-feeding for patients with pressure ulcer and its reconstructive effects on normal human skin cells in vitro. Med. Gas Res. 3(1): 20.
Liochev S.I. 2013. Reactive oxygen species and the free radical theory of aging. Free Radic. Biol. Med. 60: 1–4.
Liu Y., Fiskum G., and Schubert D. 2002. Generation of reactive oxygen species by the mitochondrial electron transport chain. J. Neurochem. 80(5): 780–787.
Matchett G.A., Fathali N., Hasegawa Y., Jadhav V., Ostrowski R.P., Martin R.D., et al. 2009. Hydrogen gas is ineffective in moderate and severe neonatal hypoxia-ischemia rat models. Brain Res. 1259: 90–97.
Merry T.L. and Ristow M. 2016. Do antioxidant supplements interfere with skeletal muscle adaptation to exercise training? J. Physiol. 594(18): 5135–5147.
Mikami, T., Tano, K., Hosung, L., Lee, H., Park, J., Ohta, F., LeBaron, T.W., and Ohta, S. 2019. Drinking hydrogen water enhances endurance and relieves psychometric fatigue: randomized, double-blind, placebo-controlled study. Can. J. Physiol. Pharmacol. In press.
Mizuno K., Sasaki A.T., Ebisu K., Tajima K., Kajimoto O., Nojima J., et al. 2017. Hydrogen-rich water for improvements of mood, anxiety, and autonomic nerve function in daily life. Med. Gas Res. 7(4): 247–255.
Morrison D., Hughes J., Della Gatta P.A., Mason S., Lamon S., Russell A.P., and Wadley G.D. 2015. Vitamin C and E supplementation prevents some of the cellular adaptations to endurance-training in humans. Free Radic. Biol. Med. 89: 852–862.
Murakami Y., Ito M., and Ohsawa I. 2017. Molecular hydrogen protects against oxidative stress-induced SH-SY5Y neuroblastoma cell death through the process of mitohormesis. PLoS One, 12(5): e0176992.
Nagata K., Nakashima-Kamimura N., Mikami T., Ohsawa I., and Ohta S. 2009. Consumption of Molecular Hydrogen Prevents the Stress-Induced Impairments in Hippocampus-Dependent Learning Tasks during Chronic Physical Restraint in Mice. Neuropsychopharmacology, 34(2): 501–508.
Nakao A., Toyoda Y., Sharma P., Evans M., and Guthrie N. 2010. Effectiveness of Hydrogen Rich Water on Antioxidant Status of Subjects with Potential Metabolic Syndrome-An Open Label Pilot Study. J. Clin. Biochem. Nutr. 46(2): 140–149.
Nakayama M., Nakano H., Hamada H., Itami N., Nakazawa R., and Ito S. 2010. A novel bioactive haemodialysis system using dissolved dihydrogen (H-2) produced by water electrolysis: a clinical trial. Nephrol. Dial. Transplant. 25(9): 3026–3033.
Nathan C. and Xie Q.W. 1994. Nitric oxide synthases: roles, tolls, and controls. Cell, 78(6): 915–918.
Nicolson G.L., de Mattos G.F., Settineri R., Costa C., Ellithorpe R., Rosenblatt S., et al. 2016. Clinical Effects of Hydrogen Administration: From Animal and Human Diseases to Exercise Medicine. Int. J. Clin. Med. 7(1): 32–76.
Nishimaki K., Asada T., Ohsawa I., Nakajima E., Ikejima C., Yokota T., et al. 2018. Effects of Molecular Hydrogen Assessed by an Animal Model and a Randomized Clinical Study on Mild Cognitive Impairment. Curr. Alzheimer Res. 15(5): 482–492.
Nishiwaki H., Ito M., Negishi S., Sobue S., Ichihara M., and Ohno K. 2018. Molecular hydrogen upregulates heat shock response and collagen biosynthesis, and downregulates cell cycles - Meta-analyses of gene expression profiles. Free Radic. Res. 52: 434–445.
Nogueira J.E., Passaglia P., Mota C.M.D., Santos B.M., Batalhão M.E., Carnio E.C., and Branco L.G.S. 2018. Molecular hydrogen reduces acute exercise-induced inflammatory and oxidative stress status. Free Radic. Biol. Med. 129: 186–193.
Ohno K., Ito M., and Ichihara M. 2012. Molecular hydrogen as an emerging therapeutic medical gas for neurodegenerative and other diseases. Oxid. Med. Cell. Longevity, 2012: 353152.
Ohsawa I., Ishikawa M., Takahashi K., Watanabe M., Nishimaki K., Yamagata K., et al. 2007. Hydrogen acts as a therapeutic antioxidant by selectively reducing cytotoxic oxygen radicals. Nat. Med. 13(6): 688–694.
Ohta S. 2015. Molecular hydrogen as a novel antioxidant: overview of the advantages of hydrogen for medical applications. Methods Enzymol. 555: 289–317.
Olesen J., Gliemann L., Biensø R., Schmidt J., Hellsten Y., and Pilegaard H. 2014. Exercise training, but not resveratrol, improves metabolic and inflammatory status in skeletal muscle of aged men. J. Physiol. 592(8): 1873–1886.
Ono H., Nishijima Y., Ohta S., Sakamoto M., Kinone K., Horikosi T., et al. 2017. Hydrogen Gas Inhalation Treatment in Acute Cerebral Infarction: A Randomized Controlled Clinical Study on Safety and Neuroprotection. J. Stroke Cerebrovasc. Dis. 26: 2587–2594.
Ortenblad N., Madsen K., and Djurhuus M.S. 1997. Antioxidant status and lipid peroxidation after short-term maximal exercise in trained and untrained humans. Am. J. Physiol.: Regul. Integr. Comp. Physiol. 272(4.2): R1258–R1263.
Ostojic S.M. 2014. Molecular Hydrogen in Sports Medicine: New Therapeutic Perspectives. Int. J. Sports Med. 36: 273–279.
Ostojic S.M. and Stojanovic M.D. 2014. Hydrogen-rich water affected blood alkalinity in physically active men. Res. Sports Med. 22(1): 49–60.
Ostojić S.M., Stojanović M.D., Calleja-Gonzalez J., Obrenović M.D., Veljović D., Međedović B., et al. 2011. Drinks with alkaline negative oxidative reduction potential improve exercise performance in physically active men and women: Double-blind, randomized, placebo-controlled, cross-over trial of efficacy and safety. Serbian J. Sports Sci. 5(1–4): 83–89.
Ostojic S.M., Vukomanovic B., Calleja-Gonzalez J., and Hoffman J.R. 2014. Effectiveness of oral and topical hydrogen for sports-related soft tissue injuries. Postgrad. Med. 126(5): 187–195.
Ostojic S.M., Korovljev D., Stajer V., and Javorac D. 2018. 28-days Hydrogen-rich Water Supplementation Affects Exercise Capacity in Mid-age Overweight Women: 2942 Board# 225. Med. Sci. Sports Exerc. 50(S5): 728–729.
Pacher P., Beckman J.S., and Liaudet L. 2007. Nitric oxide and peroxynitrite in health and disease. Physiol. Rev. 87(1): 315–424.
Palmieri B. and Sblendorio V. 2006. Oxidative stress detection: what for? Part I. Eur. Rev. Med. Pharmacol. Sci. 10(6): 291–317.
Paoloni J.A., Milne C., Orchard J., and Hamilton B. 2009. Non-steroidal anti-inflammatory drugs in sports medicine: guidelines for practical but sensible use. Br. J. Sports Med. 43(11): 863–865.
Paulsen G., Cumming K.T., Holden G., Hallén J., Rønnestad B.R., Sveen O., et al. 2014. Vitamin C and E supplementation hampers cellular adaptation to endurance training in humans: a double-blind, randomised, controlled trial. J. Physiol. 592(8): 1887–1901.
Pedersen B.K., Åkerström T.C., Nielsen A.R., and Fischer C.P. 2007. Role of myokines in exercise and metabolism. J. Appl. Physiol. 103(3): 1093–1098.
Ponte D.A., Giovanelli N., Nigris D., and Lazzer S. 2017. Effects of hydrogen rich water on prolonged intermittent exercise. J. Sports Med. Phys. Fitness. 58: 612–621.
Powers S.K., Ji L.L., Kavazis A.N., and Jackson M.J. 2011. Reactive oxygen species: impact on skeletal muscle. Compr. Physiol. 1(2): 941–969.
Ristow M. and Zarse K. 2010. How increased oxidative stress promotes longevity and metabolic health: The concept of mitochondrial hormesis (mitohormesis). Exp. Gerontol. 45(6): 410–418.
Ristow M., Zarse K., Oberbach A., Kloting N., Birringer M., Kiehntopf M., et al. 2009. Antioxidants prevent health-promoting effects of physical exercise in humans. Proc. Natl. Acad. Sci. U. S. A. 106(21): 8665–8670.
Sakai T., Sato B., Hara K., Hara Y., Naritomi Y., Koyanagi S., et al. 2014. Consumption of water containing over 3.5 mg of dissolved hydrogen could improve vascular endothelial function. Vasc. Health Risk Manage. 10: 591–597.
Sato Y., Kajiyama S., Amano A., Kondo Y., Sasaki T., Handa S., et al. 2008. Hydrogen-rich pure water prevents superoxide formation in brain slices of vitamin C-depleted SMP30/GNL knockout mice. Biochem. Biophys. Res. Commun. 375(3): 346–350.
Schoenfeld B.J. 2012. The use of nonsteroidal anti-inflammatory drugs for exercise-induced muscle damage: implications for skeletal muscle development. Sports Med. 42(12): 1017–1028.
Sha J.B., Zhang S.S., Lu Y.M., Gong W.J., Jiang X.P., Wang J.J., et al. 2018. Effects of the long-term consumption of hydrogen-rich water on the antioxidant activity and the gut flora in female juvenile soccer players from Suzhou, China. Med. Gas Res. 8(4): 135–143.
Sharman I.M., Down M.G., and Sen R.N. 1971. The effects of vitamin E and training on physiological function and athletic performance in adolescent swimmers. Br. J. Nutr. 26(2): 265–276.
Shibayama Y., Takeuchi K., Dobashi S., and Koyama K. 2017. Hydrogen-rich Water Modulates Redox Status Repeated Three Consecutive Days Of Strenuous Exercise (3298 Board# 203 June 2). Med. Sci. Sports Exerc. 49(S5): 941.
Shin D.S., Jung S.H., Hong E.Y., Shin Y.H., Park J.Y., and Chung M.H. 2018. Removal Effect of Hydrogen Water Drinking on Exercise-induced Production of Reactive Oxygen Species in Adult Men and Women. Exerc. Sci. 27(4): 289–295.
Slezak J., Kura B., Ravingerová T., Tribulova N., Okruhlicova L., and Barancik M. 2015. Mechanisms of cardiac radiation injury and potential preventive approaches. Can. J. Physiol. Pharmacol. 93(9): 737–753.
Slezák J., Kura B., Frimmel K., Zálešák M., Ravingerová T., Viczenczová C., et al. 2016. Preventive and Therapeutic Application of Molecular Hydrogen in Situations With Excessive Production of Free Radicals. Physiol. Res. 65(S1): S11–S28.
Sobue S., Inoue C., Hori F., Qiao S., Murate T., and Ichihara M. 2017. Molecular hydrogen modulates gene expression via histone modification and induces the mitochondrial unfolded protein response. Biochem. Biophys. Res. Commun. 493(1): 318–324.
Song G., Li M., Sang H., Zhang L., Li X., Yao S., et al. 2013. Hydrogen-rich water decreases serum LDL-cholesterol levels and improves HDL function in patients with potential metabolic syndrome. J. Lipid Res. 54(7): 1884–1893.
Strocchi A. and Levitt M.D. 1992. Maintaining intestinal H2 balance: credit the colonic bacteria. Gastroenterology, 102(4.1): 1424–1426.
Sun Y.P. and Sun L. 2017. Selective protective effect of hydrogen water on free radical injury of athletes after high-intensity exercise. Biomed. Res. Trace Elements, 28(10): 4558–4561.
Tang Z., Yuan L., Gu C., Liu Y., and Zhu L. 2005. Effect of exercise on the expression of adiponectin mRNA and GLUT4 mRNA in type 2 diabetic rats. J. Huazhong Univ. Sci. Technol. Med. Sci. 25(2): 191–193, 201.
Tiidus P.M., Pushkarenko J., and Houston M.E. 1996. Lack of antioxidant adaptation to short-term aerobic training in human muscle. Am. J. Physiol.: Regul. Integr. Comp. Physiol. 271(4.2): R832–R836.
Trivic T., Vojnovic M., Drid P., and Ostojic S.M. 2017. Drinking hydrogen-rich water for 4 weeks positively affects serum antioxidant enzymes in healthy men: a pilot study. Curr. Topics Nutraceut. Res. 15(1): 45–48.
Tsubone H., Hanafusa M., Endo M., Manabe N., Hiraga A., Ohmura H., and Aida H. 2013. Effect of Treadmill Exercise and Hydrogen-rich Water Intake on Serum Oxidative and Anti-oxidative Metabolites in Serum of Thoroughbred Horses. J. Equine Sci. 24(1): 1–8.
Urso M.L. 2013. Anti-inflammatory interventions and skeletal muscle injury: benefit or detriment? J. Appl. Physiol. 115(6): 920–928.
Urso M.L. and Clarkson P.M. 2003. Oxidative stress, exercise, and antioxidant supplementation. Toxicology, 189(1–2): 41–54.
Wang L., Liu Z., Hou Y., and Ge Y. 2015. Hydrogen-rich water inhibits mitochondrial oxidative stress and inflammation in the skeletal muscle after eccentric exercise. Chin. J. Tissue Eng. Res. 19(29): 4682–4687.
Wray D.W., Uberoi A., Lawrenson L., Bailey D.M., and Richardson R.S. 2009. Oral antioxidants and cardiovascular health in the exercise-trained and untrained elderly: a radically different outcome. Clin. Sci. (Lond) 116(5): 433–441.
Xia C., Liu W., Zeng D., Zhu L., Sun X., and Sun X. 2013. Effect of hydrogen-rich water on oxidative stress, liver function, and viral load in patients with chronic hepatitis B. Clin. Translation. Sci. 6(5): 372–375.
Xie Y., Mao Y., Zhang W., Lai D., Wang Q., and Shen W. 2014. Reactive Oxygen Species-Dependent Nitric Oxide Production Contributes to Hydrogen-Promoted Stomatal Closure in Arabidopsis. Plant Physiol. 165(2): 759–773.
Yamazaki M., Kusano K., Ishibashi T., Kiuchi M., and Koyama K. 2015. Intravenous infusion of H2-saline suppresses oxidative stress and elevates antioxidant potential in Thoroughbred horses after racing exercise. Sci. Rep. 5: 15514.
Yoritaka, A., Takanashi, M., Hirayama, M., Nakahara, T., Ohta, S., and Hattori, N.2013. Pilot study of H(2) therapy in Parkinson’s disease: A randomized double-blind placebo-controlled trial. Mov. Disord.
Zhai X., Chen X., Ohta S., and Sun X. 2014. Review and prospect of the biomedical effects of hydrogen. Med. Gas Res. 4(1): 19.
Zhang Y., Su W.J., Chen Y., Wu T.Y., Gong H., Shen X.L., et al. 2016. Effects of hydrogen-rich water on depressive-like behavior in mice. Sci. Rep. 6: 23742.
Zhuang Z., Sun X.J., Zhang X., Liu H.D., You W.C., Ma C.Y., et al. 2013. Nuclear factor-kappaB/Bcl-XL pathway is involved in the protective effect of hydrogen-rich saline on the brain following experimental subarachnoid hemorrhage in rabbits. J. Neurosci. Res. 91(12): 1599–1608.

Information & Authors

Information

Published In

cover image Canadian Journal of Physiology and Pharmacology
Canadian Journal of Physiology and Pharmacology
Volume 97Number 9September 2019
Pages: 797 - 807

History

Received: 1 February 2019
Accepted: 27 March 2019
Accepted manuscript online: 10 April 2019
Version of record online: 10 April 2019

Notes

This paper is part of a Special Issue of selected papers from the 5th European Section Meeting of the International Academy of Cardiovascular Sciences held in Smolenice, Slovakia, on 23–26 May 2018.

Permissions

Request permissions for this article.

Key Words

  1. reactive oxygen species
  2. antioxidants
  3. molecular hydrogen
  4. free radicals
  5. exercise
  6. inflammation
  7. redox dysregulation
  8. anti-inflammatory
  9. hormesis
  10. mitochondria

Mots-clés

  1. dérivés réactifs de l’oxygène
  2. antioxydants
  3. hydrogène moléculaire
  4. radicaux libres
  5. exercice physique
  6. inflammation
  7. dérèglement redox
  8. anti-inflammatoire
  9. hormèse
  10. mitochondrie

Authors

Affiliations

Tyler W. LeBaron [email protected]
Molecular Hydrogen Institute, Utah, USA.
Centre of Experimental Medicine, Institute for Heart Research, Slovak Academy of Sciences, Bratislava, Slovak Republic.
Ismail Laher
Department of Anesthesiology, Pharmacology and Therapeutics, Faculty of Medicine, The University of British Columbia, 217 - 2176 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada.
Branislav Kura
Centre of Experimental Medicine, Institute for Heart Research, Slovak Academy of Sciences, Bratislava, Slovak Republic.
Jan Slezak*
Centre of Experimental Medicine, Institute for Heart Research, Slovak Academy of Sciences, Bratislava, Slovak Republic.

Notes

*
Jan Slezak served as a Guest Editor; peer review and editorial decisions regarding this manuscript were handled by Tatiana Ravingerova.
Copyright remains with the author(s) or their institution(s). Permission for reuse (free in most cases) can be obtained from RightsLink.

Metrics & Citations

Metrics

Other Metrics

Citations

Cite As

Export Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

1. Inhalation of Hydrogen-rich Gas before Acute Exercise Alleviates Exercise Fatigue: A Randomized Crossover Study
2. Effectiveness and safety of hydrogen inhalation therapy as an additional treatment for hypertension in real-world practice: a retrospective, observational study in China
3. Molecular Hydrogen for Outpatients with COVID-19 (Hydro-COVID): A Phase 3 Randomised, Triple-Blinded, Pragmatic, Placebo-Controlled, Multicentre Trial
4. Therapeutic potential of hydrogen in sports orthopaedics and traumatology: A narrative review
5. Hydrogen-rich water supplementation promotes muscle recovery after two strenuous training sessions performed on the same day in elite fin swimmers: randomized, double-blind, placebo-controlled, crossover trial
6. Can molecular hydrogen supplementation reduce exercise-induced oxidative stress in healthy adults? A systematic review and meta-analysis
7. Molecular hydrogen for outpatients with Covid-19 (Hydro-Covid): a phase 3, randomised, triple-blinded, adaptive, placebo-controlled, multicentre trial
8. Advancing piezoelectric 2D nanomaterials for applications in drug delivery systems and therapeutic approaches
9. Hydrogen: From Stars to Fuel to Medicine
10. Hydrogen-Rich Water Using as a Modulator of Gut Microbiota and Managing the Inflammatory Bowel Disease
11. An Exploration of the Direct Biological Targets of Molecular Hydrogen
12. Hydrogen-rich water improves sleep consolidation and enhances forebrain neuronal activation in mice
13. The Molecular Biological Mechanism of Hydrogen Therapy and Its Application in Spinal Cord Injury
14. Hydrogen Regulates Ulcerative Colitis by Affecting the Intestinal Redox Environment
15. Application of Electrolyzed Hydrogen Water for Management of Chronic Kidney Disease and Dialysis Treatment—Perspective View
16. Hydrogen: A Rising Star in Gas Medicine as a Mitochondria-Targeting Nutrient via Activating Keap1-Nrf2 Antioxidant System
17. Therapeutic Potential of Hydrogen-Rich Water on Muscle Atrophy Caused by Immobilization in a Mouse Model
18. Editorial: Exercise-induced oxidative stress and the role of antioxidants in sport and exercise
19. Alpha Hope, via Molecular Hydrogen and Pyrroloquinoline Quinone, Dose-Dependently Increases Nrf2 and PGC-1α Levels in C2C12 Myoblasts
20. Mechanism of hydrogen protection on high intensity sports injury in rats through antioxidation and its improvement of intestinal flora function
21. The On/Off History of Hydrogen in Medicine: Will the Interest Persist This Time Around?
22. Effects of molecular hydrogen supplementation on fatigue and aerobic capacity in healthy adults: A systematic review and meta-analysis
23. Effectiveness and safety of hydrogen inhalation as an adjunct treatment in Chinese type 2 diabetes patients: A retrospective, observational, double-arm, real-life clinical study
24. Alleviation of Plant Stress by Molecular Hydrogen
25. Real-World Effectiveness and Safety of Hydrogen Inhalation in Chinese Patients with Type 2 Diabetes: A Single-Arm, Retrospective Study
26. Electrolyzed–Reduced Water: Review I. Molecular Hydrogen Is the Exclusive Agent Responsible for the Therapeutic Effects
27. Antioxidation activity of molecular hydrogen via protoheme catalysis in vivo: an insight from ab initio calculations
28. Biological Effects of Hydrogen Water on Subjects with NAFLD: A Randomized, Placebo-Controlled Trial
29. Hydrogen-rich water exerts anti-tumor effects comparable to 5-fluorouracil in a colorectal cancer xenograft model
30. Molecular hydrogen as a nutraceutical for extending the health span
31. Effects of carbohydrate-electrolyte dissolved alkaline electrolyzed water on physiological responses during exercise under heat stress in physically active men
32. Design and In Vivo Evaluation of a Novel Transdermal Hydrogen/Oxygen-Generating Patch
33. Formulation and Characterization of an Effervescent Hydrogen-Generating Tablet
34. Molecular hydrogen as an adjuvant therapy may be associated with increased oxygen saturation and improved exercise tolerance in a COVID‐19 patient
35. A Comparison of the Antioxidant Effects Between Hydrogen Gas Inhalation and Vitamin C Supplementation in Response to a 60-Min Treadmill Exercise in Rat Gastrocnemius Muscle
36. Reply to “Discussion: Drinking hydrogen water enhances endurance and relieves psychometric fatigue: a randomized, double-blind, placebo-controlled study”1
37. Hydro Shot for Sports Performance and Exercise Medicine
38. Oxidative Stress and Pathways of Molecular Hydrogen Effects in Medicine
39. Hydrogen Gas as an Exotic Performance-Enhancing Agent: Challenges and Opportunities
40. Redox Effects of Molecular Hydrogen and Its Therapeutic Efficacy in the Treatment of Neurodegenerative Diseases
41. Combating Oxidative Stress and Inflammation in COVID‐19 by Molecular Hydrogen Therapy: Mechanisms and Perspectives
42. An H2-infused, nitric oxide-producing functional beverage as a neuroprotective agent for TBIs and concussions
43. High-flow hydrogen inhalation might suppresses the immune function of middle-aged participants
44. Supersaturated Hydrogen-Rich Water Hydrotherapy for Recovery of Acute Injury to the Proximal Phalanges on the 5th Toe: A Case Report
45. Acute ingestion of hydrogen-rich water does not improve incremental treadmill running performance in endurance-trained athletes
46. <p>The Effects of 24-Week, High-Concentration Hydrogen-Rich Water on Body Composition, Blood Lipid Profiles and Inflammation Biomarkers in Men and Women with Metabolic Syndrome: A Randomized Controlled Trial</p>
47. Hydrogen Gas in Cancer Treatment
48. A New Approach for the Prevention and Treatment of Cardiovascular Disorders. Molecular Hydrogen Significantly Reduces the Effects of Oxidative Stress

View Options

Login options

Check if you access through your login credentials or your institution to get full access on this article.

Subscribe

Click on the button below to subscribe to Canadian Journal of Physiology and Pharmacology

Purchase options

Purchase this article to get full access to it.

Restore your content access

Enter your email address to restore your content access:

Note: This functionality works only for purchases done as a guest. If you already have an account, log in to access the content to which you are entitled.

View options

PDF

View PDF

Full Text

View Full Text

Media

Media

Other

Tables

Share Options

Share

Share the article link

Share on social media