Cascading community and ecosystem consequences of introduced coconut palms (Cocos nucifera) in tropical islands

Publication: Canadian Journal of Zoology
23 December 2016


Biological invasions are a pervasive and dominant form of anthropogenic disturbance. However, we seldom have the opportunity to evaluate the long-term, indirect, and often slow-moving cascading effects of invasions at the community and ecosystem scale. Here we synthesize the collective knowledge from 10 years of study on the influence of the deep historical introduction of coconut palms (Cocos nucifera L.) across a series of islets at Palmyra Atoll. Through a suite of pathways, we find this palm drives near-complete ecosystem state change when it becomes dominant. Abiotic conditions are transformed, with major soil nutrients 2.7–11.5 times lower and water stress 15% elevated in palm-dominated forests compared with native forest. Faunal communities are likewise dramatically altered, not only in composition but also in behavior, body size, and body condition. Biotic interactions, including herbivory rates, palatability, and seed predation, are likewise changed. Cumulatively, these changes transform food webs, leading to dramatically shortened and simplified food chains in invaded ecosystems. Many of these changes appear to create slow-acting feedback loops that favor the palm at the expense of native species. Given the widespread nature of this historical introduction, many island and coastal regions of tropical oceans may be similarly transformed.


Les invasions biologiques constituent une forme omniprésente et dominante de perturbation humaine. Les occasions d’en évaluer les effets de cascade indirects à long terme et souvent lents à l’échelle de la communauté et de l’écosystème sont toutefois rares. Nous présentons une synthèse des connaissances collectives découlant de 10 années d’étude sur l’influence de l’introduction historique profonde de cocotiers communs (Cocos nucifera L.) sur une série d’îlots dans l’atoll Palmyra. Nous constatons que, par l’entremise d’un ensemble de voies, cet arbre entraîne un changement presque complet de l’état de l’écosystème quand il devient dominant. Les conditions abiotiques sont transformées, les concentrations des principaux éléments nutritifs du sol étant de 2,7 à 11,5 fois plus faibles et le stress hydrique était 15 % plus grand dans les forêts dominées par les cocotiers que dans les forêts naturelles. Les communautés fauniques sont aussi considérablement modifiées, non seulement sur le plan de la composition, mais également du comportement, de la taille du corps et de l’embonpoint. Les interactions biotiques, y compris les taux d’herbivorie, la palatabilité et la granivorie, sont également modifiées. Combinés, ces changements transforment les réseaux trophiques, produisant des chaînes alimentaires considérablement raccourcies et simplifiées dans les écosystèmes envahis. Bon nombre de ces changements semblent créer des boucles de rétroaction lentes qui favorisent le cocotier au détriment d’espèces indigènes. Étant donné le caractère répandu de cette introduction historique, de nombreuses régions insulaires et côtières des océans tropicaux pourraient être transformées de manière semblable. [Traduit par la Rédaction]

Get full access to this article

View all available purchase options and get full access to this article.


Aplet G. 1990. Alteration of earthworm community biomass by the alien Myrica faya in Hawai‘i. Oecologia, 82(3): 414–416.
Barnosky A.D., Hadly E.A., Bascompte J., Berlow E.L., Brown J.H., Fortelius M., Getz W.M., Harte J., Hastings A., and Marquet P.A. 2012. Approaching a state shift in Earth’s biosphere. Nature, 486(7401): 52–58.
Baudouin L. and Lebrun P. 2009. Coconut (Cocos nucifera L.) DNA studies support the hypothesis of an ancient Austronesian migration from Southeast Asia to America. Genet. Resour. Crop Evol. 56(2): 257–262.
Bellard C., Cassey P., and Blackburn T.M. 2016. Alien species as a driver of recent extinctions. Biol. Lett. 12(2): 20150623.
Bergstrom D.M., Lucieer A., Kiefer K., Wasley J., Belbin L., Pedersen T.K., and Chown S.L. 2009. Indirect effects of invasive species removal devastate World Heritage Island. J. Appl. Ecol. 46(1): 73–81.
Briggs A.A., Young H.S., McCauley D.J., Hathaway S.A., Dirzo R., and Fisher R.N. 2012. Effects of spatial subsidies and habitat structure on the foraging ecology and size of geckos. PLoS ONE, 7(8): e41364.
Brook B.W., Ellis E.C., Perring M.P., Mackay A.W., and Blomqvist L. 2013. Does the terrestrial biosphere have planetary tipping points? Trends Ecol. Evol. 28(7): 396–401.
Clark D.A., Brown S., Kicklighter D.W., Chambers J.Q., Thomlinson J.R., Ni J., and Holland E.A. 2001. Net primary production in tropical forests: an evaluation and synthesis of existing field data. Ecol. Appl. 11(2): 371–384.
Collen J., Garton D., and Gardner J. 2009. Shoreline changes and sediment redistribution at Palmyra Atoll (Equatorial Pacific Ocean): 1874–present. J. Coast. Res. 25(3): 711–722.
Croll D.A., Maron J.L., Estes J.A., Danner E.M., and Byrd G. 2005. Introduced predators transform subarctic islands from grassland to tundra. Science, 307(5717): 1959–1961.
Cuddington K. and Hastings A. 2004. Invasive engineers. Ecol. Model. 178(3): 335–347.
Dawson E.Y. 1959. Changes in Palmyra Atoll and its vegetation through the activities of man, 1913–1958. Pac. Nat. 1(2): 1–51.
Ehrenfeld J. 2010. Ecosystem consequences of biological invasions. Annu. Rev. Ecol. Evol. Syst. 41: 59–80.
Elton, C.S. 1958. The ecology of invasions by animals and plants. Springer, London.
Estes J.A. and Palmisano J.F. 1974. Sea otters: their role in structuring nearshore communities. Science, 185(4156): 1058–1060.
Ewel J.J., O’Dowd D.J., Bergelson J., Daehler C.C., D’Antonio C.M., Gómez L.D., Gordon D.R., Hobbs R.J., Holt A., and Hopper K.R. 1999. Deliberate introductions of species: research needs benefits can be reaped, but risks are high. BioScience, 49(8): 619–630.
Fitzherbert E.B., Struebig M.J., Morel A., Danielsen F., Bruhl C.A., Donald P.F., and Phalan B. 2008. How will oil palm expansion affect biodiversity? Trends Ecol. Evol. 23(10): 538–545.
Foale, M. 2005. An introduction to the coconut palm. In Coconut genetic resources. Edited by P. Batugal, V. Ramanatha, G.P. Rao, and J. Oliver. Serdang, Selangor DE, Malaysia. pp. 1–8.
Gaertner M., Biggs R., Te Beest M., Hui C., Molofsky J., and Richardson D.M. 2014. Invasive plants as drivers of regime shifts: identifying high-priority invaders that alter feedback relationships. Divers. Distrib. 20(7): 733–744.
Gilbert B. and Levine J.M. 2013. Plant invasions and extinction debts. Proc. Natl. Acad. Sci. U.S.A. 110(5): 1744–1749.
Gillman L., Wright S., and Ogden J. 2003. Response of forest tree seedlings to simulated litterfall damage. Plant Ecol. 169(1): 53–60.
Gomes F.P. and Prado C.H. 2007. Ecophysiology of coconut palm under water stress. Braz. J. Plant Physiol. 19(4): 377–391.
Green P.T., O’Dowd D.J., and Lake P. 1997. Control of seedling recruitment by land crabs in rain forest on a remote oceanic island. Ecology, 78(8): 2474–2486.
Gunn B.F., Baudouin L., and Olsen K.M. 2011. Independent origins of cultivated coconut (Cocos nucifera L.) in the Old World tropics. PLoS ONE, 6(6): e21143.
Gurevitch J. and Padilla D.K. 2004. Are invasive species a major cause of extinctions? Trends Ecol. Evol. 19(9): 470–474.
Handler A.T., Gruner D.S., Haines W.P., Lange M.W., and Kaneshiro K.Y. 2007. Arthropod surveys on Palmyra Atoll, Line Islands, and insights into the decline of the native tree Pisonia grandis (Nyctaginaceae). Pac. Sci. 61(4): 485–502.
Harries H. 1978. The evolution, dissemination and classification of Cocos nucifera L. Bot. Rev. 44(3): 265–319.
Hughes F., Vitousek P.M., and Tunison T. 1991. Alien grass invasion and fire in the seasonal submontane zone of Hawai‘i. Ecology, 72(2): 743–747.
Hulme P.E. 2009. Trade, transport and trouble: managing invasive species pathways in an era of globalization. J. Appl. Ecol. 46(1): 10–18.
Jayasekara, K.S., and Jayasekara, C. 1993. Efficiency of water-use in coconut under different soil/plant management systems. In Advances in coconut research and development. Edited by M.K. Nair, H.H. Khan, P. Gopalasundaran, and E.V. Bhaskara Rao. Oxford & IBH Publishing, New Delhi, India. pp. 427.
Jones C.G., Lawton J.H., and Shachak M. 1994. Organisms as ecosystem engineers. Oikos, 69: 373–386.
Kowarik I. 2003. Human agency in biological invasions: secondary releases foster naturalisation and population expansion of alien plant species. Biol. Invasions, 5(4): 293–312.
Krauss K.W., Duberstein J.A., Cormier N., Young H.S., and Hathaway S.A. 2015. Proximity to encroaching coconut palm limits native forest water use and persistence on a Pacific atoll. Ecohydrology, 8(8): 1514–1524.
Lafferty K.D., Hathaway S.A., Wegmann A.S., Shipley F.S., Backlin A.R., Helm J., and Fisher R.N. 2010. Stomach nematodes (Mastophorus muris) in rats (Rattus rattus) are associated with coconut (Cocos nucifera) habitat at Palmyra Atoll. J. Parasitol. 96(1): 16–20.
Lindquist E.S. and Carroll C.R. 2004. Differential seed and seedling predation by crabs: impacts on tropical coastal forest composition. Oecologia, 141(4): 661–671.
Lindquist E.S., Krauss K.W., Green P.T., O’Dowd D.J., Sherman P.M., and Smith T.J. 2009. Land crabs as key drivers in tropical coastal forest recruitment. Biol. Rev. 84(2): 203–223.
Litton C.M., Raich J.W., and Ryan M.G. 2007. Carbon allocation in forest ecosystems. Global Change Biol. 13(10): 2089–2109.
Lockwood J.L., Cassey P., and Blackburn T. 2005. The role of propagule pressure in explaining species invasions. Trends Ecol. Evol. 20(5): 223–228.
Mack R.N. 2000. Cultivation fosters plant naturalization by reducing environmental stochasticity. Biol. Invasions, 2(2): 111–122.
Mack R.N., Simberloff D., Mark Lonsdale W., Evans H., Clout M., and Bazzaz F.A. 2000. Biotic invasions: causes, epidemiology, global consequences, and control. Ecol. Appl. 10(3): 689–710.
Marschner, H. 1995. Functions of mineral nutrients: macronutrients. In Mineral nutrition of higher plants. 2nd ed. Academic Press, New York. pp. 299–312.
Matisoo-Smith E. and Robins J.H. 2004. Origins and dispersals of Pacific peoples: evidence from mtDNA phylogenies of the Pacific rat. Proc. Natl. Acad. Sci. U.S.A. 101(24): 9167–9172.
McCauley, D.J., DeSalles, P.A., Young, H.S., Dunbar, R.B., Dirzo, R., Mills, M.M., and Micheli, F. 2012. From wing to wing: the persistence of long ecological interaction chains in less-disturbed ecosystems. Sci. Rep. 2: article 409.
Mulder, C., Jones, H., Kameda, K., Palmborg, C., Schmidt, S., Ellis, J., Orrock, J., Wait, A., Wardle, D., and Yang, L. 2011. Impacts of seabirds on plant and soil properties. In Seabird islands: ecology, invasion and restoration. Edited by C.P. Mulder, W.S. Anderson, D. Towns, and P. Bellingham. Oxford University Press, New York. pp. 135–176.
O’Dowd D.J., Green P.T., and Lake P.S. 2003. Invasional ‘meltdown’ on an oceanic island. Ecol. Lett. 6(9): 812–817.
Paleczny M., Hammill E., Karpouzi V., and Pauly D. 2015. Population trend of the world’s monitored seabirds, 1950-2010. PLoS ONE, 10(6): e0129342.
Peters H.A., Pauw A., Silman M.R., and Terborgh J.W. 2004. Falling palm fronds structure Amazonian rainforest sapling communities. Proc. R. Soc. B Biol. Sci. 271(Suppl. 5): S367–S369.
Pimentel D., Lach L., Zuniga R., and Morrison D. 2000. Environmental and economic costs of nonindigenous species in the United States. BioScience, 50(1): 53–65.
Powell K.I., Chase J.M., and Knight T.M. 2013. Invasive plants have scale-dependent effects on diversity by altering species–area relationships. Science, 339(6117): 316–318.
Pyšek P., Jarošík V., Hulme P.E., Pergl J., Hejda M., Schaffner U., and Vilà M. 2012. A global assessment of invasive plant impacts on resident species, communities and ecosystems: the interaction of impact measures, invading species’ traits and environment. Glob. Chang. Biol. 18(5): 1725–1737.
Reichard S.H. and White P. 2001. Horticulture as a pathway of invasive plant introductions in the United States. BioScience, 51(2): 103–113.
Rejmánek M. and Richardson D.M. 2013. Trees and shrubs as invasive alien species — 2013 update of the global database. Divers. Distrib. 19(8): 1093–1094.
Roupsard O., Bonnefond J.-M., Irvine M., Berbigier P., Nouvellon Y., Dauzat J., Taga S., Hamel O., Jourdan C., and Saint-André L. 2006. Partitioning energy and evapo-transpiration above and below a tropical palm canopy. Agric. For. Meteorol. 139(3): 252–268.
Schmidt S., Dennison W.C., Moss G.J., and Stewart G.R. 2004. Nitrogen ecophysiology of Heron Island, a subtropical coral cay of the Great Barrier Reef, Australia. Funct. Plant Biol. 31(5): 517–528.
Simberloff D. 2006. Invasional meltdown 6 years later: important phenomenon, unfortunate metaphor, or both? Ecol. Lett. 9(8): 912–919.
Simberloff D., Martin J.-L., Genovesi P., Maris V., Wardle D.A., Aronson J., Courchamp F., Galil B., García-Berthou E., and Pascal M. 2013. Impacts of biological invasions: what’s what and the way forward. Trends Ecol. Evol. 28(1): 58–66.
Thuiller W., Richardson D.M., Rouget M., Proches S., and Wilson J.R. 2006. Interactions between environment, species traits, and human uses describe patterns of plant invasions. Ecology, 87(7): 1755–1769.
Tylianakis J.M., Didham R.K., Bascompte J., and Wardle D.A. 2008. Global change and species interactions in terrestrial ecosystems. Ecol. Lett. 11(12): 1351–1363.
Vilà M., Espinar J.L., Hejda M., Hulme P.E., Jarošík V., Maron J.L., Pergl J., Schaffner U., Sun Y., and Pyšek P. 2011. Ecological impacts of invasive alien plants: a meta-analysis of their effects on species, communities and ecosystems. Ecol. Lett. 14(7): 702–708.
Vitousek, P.M. 1986. Biological invasions and ecosystem properties: can species make a difference? In Ecology of biological invasions of North America and Hawaii. Edited by H.A. Mooney and J.A. Drake. Springer-Verlag, New York. pp. 163–176.
Vitousek P.M. and Walker L.R. 1989. Biological invasion by Myrica faya in Hawai‘i: plant demography, nitrogen fixation, ecosystem effects. Ecol. Monogr. 59(3): 247–265.
Vitousek P.M., D’Antonio C.M., Loope L.L., Rejmanek M., and Westbrooks R. 1997. Introduced species: a significant component of human-caused global change. N.Z. J. Ecol. 21(1): 1–16.
Vivrette N.J. and Muller C.H. 1977. Mechanism of invasion and dominance of coastal grassland by Mesembryanthemum crystallinum. Ecol. Monogr. 47(3): 301–318.
Wegmann, A.S. 2009. Limitations to tree seedling recruitment at Palmyra Atoll. Ph.D. dissertation, University of Hawai‘i at Manoa, Honolulu.
Young H.S., McCauley D.J., Dunbar R.B., and Dirzo R. 2010a. Plants cause ecosystem nutrient depletion via the interruption of bird-derived spatial subsidies. Proc. Natl. Acad. Sci. U.S.A. 107(5): 2072–2077.
Young H.S., Raab T.K., McCauley D.J., Briggs A.A., and Dirzo R. 2010b. The coconut palm, Cocos nucifera, impacts forest composition and soil characteristics at Palmyra Atoll, Central Pacific. J. Veg. Sci. 21(6): 1058–1068.
Young H.S., McCauley D.J., and Dirzo R. 2011. Differential responses to guano fertilization among tropical tree species with varying functional traits. Am. J. Bot. 98(2): 207–214.
Young H.S., McCauley D.J., Dunbar R.B., Hutson M.S., Ter-Kuile A.M., and Dirzo R. 2013a. The roles of productivity and ecosystem size in determining food chain length in tropical terrestrial ecosystems. Ecology, 94(3): 692–701.
Young H.S., McCauley D.J., Guevara R., and Dirzo R. 2013b. Consumer preference for seeds and seedlings of rare species impacts tree diversity at multiple scales. Oecologia, 172(3): 857–867.
Young H.S., McCauley D.J., Pollock A., and Dirzo R. 2014. Differential plant damage due to litterfall in palm-dominated forest stands in a Central Pacific atoll. J. Trop. Ecol. 30(03): 231–236.
Zavaleta E.S., Hobbs R.J., and Mooney H.A. 2001. Viewing invasive species removal in a whole-ecosystem context. Trends Ecol. Evol. 16(8): 454–459.

Supplementary Material

Supplementary data (cjz-2016-0107suppl.docx)

Information & Authors


Published In

cover image CJZ Virtual Special Issues
Canadian Journal of Zoology
Volume 01Number 01April 2017
Pages: 139 - 148


Received: 4 May 2016
Accepted: 7 September 2016
Accepted manuscript online: 23 December 2016
Version of record online: 23 December 2016


This review is one of a series of invited papers arising from the symposium “Large, landscape-level ecological disturbances / Larges perturbations à l’échelle des paysages” that was co-sponsored by the Canadian Society of Zoologists and the Canadian Journal of Zoology and held during the Annual Meeting of the Canadian Society of Zoologists at the University of Calgary, Calgary, Alberta, 25–29 May 2015.


Request permissions for this article.

Key Words

  1. invasive species
  2. introduced species
  3. historical introductions
  4. ecological cascades
  5. bottom-up processes
  6. ecological harbingers
  7. spatial subsidies
  8. Cocos nucifera


  1. espèce envahissante
  2. espèce introduite
  3. introductions historiques
  4. cascades écologiques
  5. processus ascendants
  6. présage écologique
  7. apports spatiaux
  8. Cocos nucifera



Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA 93106, USA.
A. Miller-ter Kuile
Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA 93106, USA.
D.J. McCauley
Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA 93106, USA.
R. Dirzo
Department of Biology, Stanford University, Stanford, CA 94305, USA.


Copyright remains with the author(s) or their institution(s). Permission for reuse (free in most cases) can be obtained from RightsLink.

Metrics & Citations


Other Metrics


Cite As

Export Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

1. Niche Construction and Long-Term Trajectories of Food Production
2. Conservation of marine birds: Biosecurity, control, and eradication of invasive species threats
3. Pacific Island Perspectives on Invasive Species and Climate Change
4. High-resolution global map of closed-canopy coconut palm
5. Changes in invertebrate food web structure between high- and low-productivity environments are driven by intermediate but not top-predator diet shifts
6. Seabird diversity and biomass enhance cross-ecosystem nutrient subsidies
7. Transforming Palmyra Atoll to native-tree dominance will increase net carbon storage and reduce dissolved organic carbon reef runoff
8. Potential benefits to breeding seabirds of converting abandoned coconut plantations to native habitats after invasive predator eradication
9. Impacts of rodent eradication on seed predation and plant community biomass on a tropical atoll
10. Non‐native palms (Arecaceae) as generators of novel ecosystems: A global assessment
11. Quantifying coconut palm extent on Pacific islands using spectral and textural analysis of very high resolution imagery
12. Invasive rat eradication strongly impacts plant recruitment on a tropical atoll
13. Stable isotope analysis as an early monitoring tool for community‐scale effects of rat eradication

View Options

Get Access

View options


View PDF

Full Text

View Full Text





Share Options


Share the article link

Share on social media