Cookies Notification

We use cookies to improve your website experience. To learn about our use of cookies and how you can manage your cookie settings, please see our Cookie Policy.
×

The role of echolocation strategies for niche differentiation in bats

Publication: Canadian Journal of Zoology
4 October 2017

Abstract

Guilds subdivide bat assemblages into basic structural units of species with similar patterns of habitat use and foraging modes, but do not explain mechanisms of niche differentiation. Bats have evolved four different echolocation strategies allowing the access to four different trophic niche spaces differing in niche dimensions. Bats foraging in open and edge spaces use the “aerial hawking or trawling strategy” and detect and localize prey by evaluating pulse–echo trains in which the prey echo is unmasked. The pulse–echo pairs deliver mainly positional information on the prey and only little information on its nature. Signals are highly variable and are adapted for detection and localization in open space and (or) edge space. In narrow space, bats identify prey by solving a pattern recognition task. Bats using the “flutter detecting strategy” evaluate glint pattern in prey echoes; bats using the “active gleaning strategy” evaluate the spectral–temporal pattern of the prey–clutter echo complex; and bats using the “passive gleaning strategy” evaluate the pattern of prey-generated cues to find food and use echolocation only for spatial orientation. The less variable signals of narrow space bats are adapted for pattern recognition. The diverse and species-rich tropical bat assemblage at Barro Colorado Island, Panama, is here used as an exemplar for assigning bats to guilds, and we discuss the role of echolocation and other adaptations for niche differentiation within guilds.

Résumé

Si les guildes servent à subdiviser les assemblages de chauves-souris en unités structurales fondamentales d’espèces présentant des motifs semblables d’utilisation d’habitats et de modes d’approvisionnement, elles n’expliquent pas les mécanismes de différentiation de niche. Les chauves-souris ont développé quatre stratégies d’écholocalisation distinctes leur permettant d’accéder à quatre espaces de niche trophique différents caractérisés par différentes dimensions des niches. Les chauves-souris qui s’approvisionnent dans des espaces ouverts et de bordure utilisent une « stratégie de colportage ou de chalutage » aérien et détectent et localisent les proies en évaluant des trains d’impulsions et d’échos dans lesquels l’écho de la proie est démasqué. Les paires impulsion–écho fournissent principalement des renseignements positionnels sur la proie, mais peu d’information sur sa nature. Les signaux sont très variables et adaptés à la détection et la localisation dans des espaces ouverts ou de bordure. Dans les espaces étroits, les chauves-souris identifient leurs proies en résolvant un problème de reconnaissance de motifs. Des chauves-souris utilisant la « stratégie de détection de scintillement » évaluent le motif de scintillement dans les échos de proie, des chauves-souris utilisant la « stratégie de glanage actif » évaluent le motif spectral–temporel du complexe proie–fouillis écho et les chauves-souris qui utilisent la « stratégie de glanage passif » évaluent le motif de signaux générés par les proies pour trouver de la nourriture et n’utilisent l’écholocalisation qu’à des fins d’orientation dans l’espace. Les signaux moins variables des chauves-souris d’espaces étroits sont adaptés à la reconnaissance de motifs. L’assemblage varié et de grande richesse spécifique de chauves-souris dans l’île Barro Colorado (Panama) est utilisé comme exemplaire de référence pour l’affectation des chauves-souris à des guildes, et nous abordons le rôle de l’écholocalisation et d’autres adaptations dans la différenciation de niche au sein de guildes. [Traduit par la Rédaction]

Get full access to this article

View all available purchase options and get full access to this article.

References

Aldridge H.D.J.N. and Rautenbach I.L. 1987. Morphology, echolocation and resource partitioning in insectivorous bats. J. Anim. Ecol. 56: 763–778.
Arita H.T. and Fenton M.B. 1997. Flight and echolocation in the ecology and evolution of bats. Trends Ecol. Evol. 12: 53–58.
Arlettaz R., Perrin N., and Hausser J. 1997. Trophic resource partitioning and competition between two sibling bat species Myotis myotis and Myotis blythii. J. Anim. Ecol. 66: 897–911.
Arlettaz R., Jones G., and Racey P.A. 2001. Effect of acoustic clutter on prey detection by bats. Nature, 414: 742–745.
Armstrong R.A. and McGehee R. 1980. Competitive exclusion. Am. Nat. 115: 151–171.
Bell G. 1982. Behavioral and ecological aspects of gleaning by a desert insectivorous bat Antrozous pallidus (Chiroptera: Vespertilionidae). Behav. Ecol. Sociobiol. 10: 217–223.
Bell G.P. 1985. The sensory basis of prey location by the California leaf-nosed bat Macrotus californicus (Chiroptera: Phyllostomidae). Behav. Ecol. Sociobiol. 16: 343–347.
Bellwood J. and Morris G. 1987. Bat predation and its influence on calling behavior in neotropical katydids. Science, 238: 64–67.
Bernard E. 2001. Vertical stratification of bat communities in primary forests of Central Amazon, Brazil. J. Trop. Ecol. 17: 115–126.
Clare E.L. and Holderied M.W. 2015. Acoustic shadows help gleaning bats find prey, but may be defeated by prey acoustic camouflage on rough surfaces. Elife, 4: e07404.
Crome F.H.J. and Richards G.C. 1988. Bats and gaps: microchiropteran community structure in a Queensland rain forest. Ecology, 69: 1960–1969.
Denzinger, A., and Schnitzler, H.-U. 2004. Perceptual tasks in echolocating bats. In Dynamic perception. Edited by U.J. Ilg, H.H. Bülthoff, and H.A. Mallot. Akademische Verlagsgesellschaft, Berlin. pp. 33–38.
Denzinger A. and Schnitzler H.-U. 2013. Bat guilds, a concept to classify the highly diverse foraging and echolocation behaviors of microchiropteran bats. Front. Physiol. 4: 164.
Denzinger, A., Tschapka, M., Kalko, E.K.V., Grinnell, A.D., and Schnitzler, H.-U. 2016. Guild structure and niche differentiation in echolocating bats. In Bat bioacoustics. Springer handbook of auditory research. Edited by B.M. Fenton, A.D. Grinnell, A.N. Popper, and R.R. Fay. Springer, New York. pp. 141–166.
Dumont E.R., Herrel A., Medellín R.A., Vargas-Contreras J.A., and Santana S.E. 2009. Built to bite: cranial design and function in the wrinkle-faced bat. J. Zool. (Lond.), 279: 329–337.
Falk J.J., ter, Hofstede H.M., Jones P.L., Dixon M.M., Faure P.A., Kalko E.K.V., and Page R.A. 2015. Sensory-based niche partitioning in a multiple predator — multiple prey community. Proc. R. Soc. B. Biol. Sci. 282: 20150520.
Faure P. and Barclay R. 1994. Substrate-gleaning versus aerial-hawking: plasticity in the foraging and echolocation behavior of the long-eared bat, Myotis evotis. J. Comp. Physiol. A, 174: 651–660.
Fenton M.B. 1990. The foraging behaviour and ecology of animal-eating bats. Can. J. Zool. 68(3): 411–422.
Fenton, M.B. 1995. Natural history and biosonar signals. In Hearing by bats. Springer handbook of auditory research. Edited by A.N. Popper and R.R. Fay. Springer, Berlin. pp. 37–86.
Fenton M.B., Portfors C.V., Rautenbach I.L., and Waterman J.M. 1998. Compromises: sound frequencies used in echolocation by aerial-feeding bats. Can. J. Zool. 76(6): 1174–1182.
Flick, J. 2008. Der Wechsel vom passiven zum aktiven Substratfang beim Großen Mausohr (Myotis myotis, Borkhausen 1797). Diploma thesis, Faculty of Science, University of Tuebingen, Tuebingen, Germany.
Gardner, A.L. 1977. Feeding habits. In Biology of bats of the New World family Phyllostomatidae. Part II, Special Publications. Edited by R.J. Baker, J.K. Jones, Jr, and D.C. Carter. The Museum, Texas Tech University, Lubbock. pp. 293–350.
Geipel I., Jung K., and Kalko E.K.V. 2013a. Perception of silent and motionless prey on vegetation by echolocation in the gleaning bat Micronycteris microtis. Proc. R. Soc. B Biol. Sci. 280: 20122830.
Geipel I., Kalko E.K.V., Wallmeyer K., and Knörnschild M. 2013b. Postweaning maternal food provisioning in a bat with a complex hunting strategy. Anim. Behav. 85: 1435–1441.
Giannini N.P. and Kalko E.K.V. 2004. Trophic structure in a large assemblage of phyllostomid bats in Panama. Oikos, 105: 209–220.
Giannini N.P. and Kalko E.K.V. 2005. The guild structure of animalivorous leaf-nosed bats of Barro Colorado Island, Panama, revisited. Acta Chiropterol. 7: 131–146.
Goerlitz H.R. and Siemers M.B. 2007. Sensory ecology of prey rustling sounds: acoustical features and their classification by wild Grey Mouse Lemurs. Funct. Ecol. 21: 143–153.
Goerlitz H.R., Greif S., and Siemers B.M. 2008. Cues for acoustic detection of prey: insect rustling sounds and the influence of walking substrates. J. Exp. Biol. 211: 2799–2806.
Gonzalez-Terrazas T.P., Koblitz J.C., Fleming T.H., Medellín R.A., Kalko E.K.V., Schnitzler H.-U., and Tschapka M. 2016a. How nectar-feeding bats localize their food: echolocation behavior of Leptonycteris yerbabuenae approaching cactus flowers. PloS ONE, 11: e0163492.
Gonzalez-Terrazas T.P., Martel C., Milet-Pinheiro P., Ayasse M., Kalko E.K.V., and Tschapka M. 2016b. Finding flowers in the dark: nectar-feeding bats integrate olfaction and echolocation while foraging for nectar. R. Soc. Open Sci. 3: 160199.
Heller K.-G. and Volleth M. 1995. Community structure and evolution of insectivorous bats in the Palaeotropics and Neotropics. J. Trop. Ecol. 11: 429–442.
Hill, J.E., and Smith, J.D. 1984. Bats: a natural history. British Museum (Natural History), London.
Humphrey S.R., Bonaccorso F.J., and Zinn T.L. 1983. Guild structure of surface-gleaning bats in Panama. Ecology, 64: 284–294.
Hutchinson G.E. 1957. Concluding remarks. Cold Spring Harb. Symp. Quant. Biol. 22: 415–427.
Hutchinson G.E. 1959. Homage to Santa Rosalia or why are there so many kinds of animals? Am. Nat. 93:145–159.
Jones, G., and Rydell, J. 2003. Attack and defense: interactions between echolocating bats and their insect prey. In Bat ecology. Edited by T.H. Kunz and M.B. Fenton. The University of Chicago Press, Chicago and London. pp. 301–345.
Jones P.L., Ryan M., and Page R.A. 2014. Population and seasonal variation in response to prey calls by an eavesdropping bat. Behav. Ecol. Sociobiol. 608: 605–615.
Jones, P.L., Page, R.A., and Ratcliffe, J.M. 2016. To Scream or to listen? Prey detection and discrimination in animal-eating bats. In Bat bioacoustics. Springer handbook of auditory research. Edited by B.M. Fenton, A.D. Grinnell, A.N. Popper, and R.R. Fay. Springer, New York. pp. 93–116.
Jung K., Kalko E.K.V., and von, and Helversen O. 2007. Echolocation calls in Central American emballonurid bats: signal design and call frequency alternation. J. Zool. (Lond.), 272: 125–137.
Jung K., Molinari J., and Kalko E.K.V. 2014. Driving factors for the evolution of species-specific echolocation call design in new world free-tailed bats (Molossidae). PLoS ONE, 9: e85279.
Kalko, E.K.V. 1997. Diversity in tropical bats. In Tropical biodiversity and systematics. Edited by H. Ulrich. Zoologisches Forschungsinstitut und Museum König, Bonn, Germany. pp. 13–43.
Kalko E.K.V. 1998. Organization and diversity of tropical bat communities through space and time. Zoology, 101: 281–297.
Kalko E.K.V. and Handley C.O. 2001. Neotropical bats in the canopy: diversity, community structure and implications for conservation. Plant Ecol. 153: 319–333.
Kalko, E.K.V., Handley, C.O., and Handley, D. 1996a. Organization, diversity, and long-term dynamics of a neotropical bat community. In Long-term studies in vertebrate communities. Edited by M. Cody and J. Smallwood. Academic Press, Los Angeles, Calif. pp. 503–553.
Kalko E.K.V., Herre E.A., and Handley C.O. 1996b. Relation of fig fruit characteristics to fruit-eating bats in the New and Old World tropics. J. Biogeogr. 23: 565–576.
Kalko E.K.V., Schnitzler H.-U., Kaipf I., and Grinnell A.D. 1998. Echolocation and foraging behavior of the lesser bulldog bat, Noctilio albiventris: preadaptations for piscivory? Behav. Ecol. Sociobiol. 42: 305–319.
Kalko E.K.V., Friemel D., Handley C.O., and Schnitzler H.-U. 1999. Roosting and foraging behavior of two neotropical gleaning bats, Tonatia silvicola and Trachops cirrhosus (Phyllostomidae). Biotropica, 31: 344–353.
Kalko E.K.V., Estrada Villegas, S., Schmidt M., Wegmann M., and Meyer C.F.J. 2008. Flying high — assessing the use of the aerosphere by bats. Integr. Comp. Biol. 48: 60–73.
Kober R. and Schnitzler H.-U. 1990. Information in sonar echoes of fluttering insects available for echolocating bats. J. Acoust. Soc. Am. 87: 882–896.
Korňan M. and Adamik P. 2007. Foraging guild structure within a primaeval mixed forest bird assemblage: a comparison of two concepts. Community Ecol. 8: 133–149.
Koselj K., Schnitzler H.-U., and Siemers B.M. 2011. Horseshoe bats make adaptive prey selection decisions, informed by echo cues. Proc. R. Soc. B Biol. Sci. 278: 3034–3041.
Lawrence B.D. and Simmons J.A. 1982. Measurements of atmospheric attenuation at ultrasonic frequencies and the significance for echolocation by bats. J. Acoust. Soc. Am. 71: 585–590.
McNab B.K. 1971. The structure of tropical bat faunas. Ecology, 52: 352–358.
Muchhala N. and Serrano D. 2015. The complexity of background clutter affects nectar bat use of flower odor and shape cues. PloS ONE, 10: e0136657.
Neuweiler G. 1989. Foraging ecology and audition in echolocating bats. Trends Ecol. Evol. 4: 160–166.
Nogueira M.R. and Peracchi A.L. 2003. Fig-seed predation by 2 species of Chiroderma: discovery of a new feeding strategy in bats. J. Mammal. 84: 225–233.
Norberg, U.M. 1994. Wing design, flight performance and habitat use in bats. In Ecological morphology: integrative organismal biology. Edited by P.C. Wainwright and S.M. Reilly. University of Chicago Press, Chicago, Ill. pp. 205–239.
Norberg U.M. and Rayner J.M.V. 1987. Ecological morphology and flight in bats (Mammalia: Chiroptera): wing adaptations, flight performance, foraging strategy and echolocation. Philos. Trans. R. Soc. B Biol. Sci. 316: 335–427.
Plumpton D.L. and Jones J.K. Jr 1992. Rynchonycteris naso. Mamm. Species, 413: 1–5.
Ratcliffe J.M., Fenton M.B., and Shettleworth S.J. 2006. Behavioral flexibility positively correlated with relative brain volume in predatory bats. Brain Behav. Evol. 67: 165–176.
Rex K., Kelm D.H., Wiesner K., Kunz T.H., and Voigt C.C. 2008. Species richness and structure of three Neotropical bat assemblages. Biol. J. Linn. Soc. 94: 617–629.
Root R.B. 1967. The niche exploitation pattern of the blue-gray gnatcatcher. Ecol. Monogr. 37: 317–350.
Schaub A. and Schnitzler H.-U. 2007. Echolocation behavior of the bat Vespertilio murinus reveals the border between the habitat types “edge” and “open space”. Behav. Ecol. Sociobiol. 61: 513–523.
Schmieder D.A., Kingston T., Hashim R., and Siemers B.M. 2012. Sensory constraints on prey detection performance in an ensemble of vespertilionid understorey rain forest bats. Funct. Ecol. 26: 1043–1053.
Schnitzler H.-U. and Denzinger A. 2011. Auditory fovea and Doppler shift compensation: adaptations for flutter detection in echolocating bats using CF–FM signals. J. Comp. Physiol. A, 197: 541–559.
Schnitzler, H.-U., and Kalko, E.K.V. 1998. How echolocating bats search and find food. In Bat biology and conservation. Edited by T.H. Kunz and P.A. Racey. Smithsonian Institution Press, Washington, D.C., and London, U.K. pp. 183–196.
Schnitzler H.-U. and Kalko E.K.V. 2001. Echolocation by insect-eating bats. BioScience, 51: 557–569.
Schnitzler H.-U., Kalko E.K.V., Kaipf I., and Grinnell A.D. 1994. Fishing and echolocation behavior of the greater bulldog bat, Noctilio leporinus, in the field. Behav. Ecol. Sociobiol. 35: 327–345.
Schnitzler H.-U., Moss C.F., and Denzinger A. 2003. From spatial orientation to food acquisition in echolocating bats. Trends Ecol. Evol. 18: 386–394.
Segura-Trujillo C.A., Lidicker W.Z. Jr, and Álvarez-Castañeda S.T. 2016. New perspectives on trophic guilds of arthropodivorous bats in North and Central America. J. Mammal. 97: 644–654.
Siemers B.M. and Schnitzler H.-U. 2004. Echolocation signals reflect niche differentiation in five sympatric congeneric bat species. Nature, 429: 657–661.
Simberloff D. and Dayan T. 1991. The guild concept and the structure of ecological communities. Annu. Rev. Ecol. Syst. 22: 115–143.
Simon R., Holderied M.W., Koch C.U., and von Helversen O. 2011. Floral acoustics: conspicuous echoes of a dish-shaped leaf attract bat pollinators. Science, 333: 631–633.
Stauch, A. 1997. Habitatnutzung und Echoortungsverhalten einer Gemeinschaft aerial insektivorer Fledermäuse im Barro Colorado Nature Monument, Panama. Diploma thesis, Faculty of Biology, University of Tuebingen, Tuebingen, Germany.
Stilz W.-P. and Schnitzler H.-U. 2012. Estimation of the acoustic range of bat echolocation for extended targets. J. Acoust. Soc. Am. 132: 1765–1775.
Terborgh J., Robinson S.K., Parker T.A. III, Munn C.A., and Pierpont N. 1990. Structure and organization of an Amazonian forest bird community. Ecol. Monogr. 60: 213–238.
Trillo P.A., Athanas K.A., Goldhill D.H., Hoke K.L., and Funk W.C. 2013. The influence of geographic heterogeneity in predation pressure on sexual signal divergence in an Amazonian frog species complex. J. Evol. Biol. 26: 216–222.
Tschapka M., Brooke A.P., and Wasserthal L.T. 2000. Thyroptera discifera (Chiroptera: Thyropteridae): a new record for Costa Rica and observations on echolocation. Z. Säugetierk. 65: 193–198.
Tuttle M.D. and Ryan M.J. 1981. Bat predation and the evolution of frog vocalizations in the Neotropics. Science, 214: 677–678.
Uebernickel K., Simon R., Kalko E.K.V., and Tschapka M. 2016. Sensory challenges for trawling bats: finding transient prey on water surfaces. J. Acoust. Soc. Am. 139: 1914–1922.
von der Emde G. and Schnitzler H.-U. 1990. Classification of insects by echolocating greater horseshoe bats. J. Comp. Physiol. A, 167: 423–430.
von Helversen D. and von Helversen O. 1999. Acoustic guide in bat-pollinated flower. Nature, 398: 759–760.
von Helversen D., Holderied M.W., and von Helversen O. 2003. Echoes of bat-pollinated bell-shaped flowers: conspicuous for nectar-feeding bats? J. Exp. Biol. 206: 1025–1034.
Wagner I., Ganzhorn J., Kalko E.K.V., and Tschapka M. 2015. Cheating on the mutualistic contract: nutritional gain through seed predation in the frugivorous bat Chiroderma villosum (Phyllostomidae). J. Exp. Biol. 218: 1016–1021.
Weinbeer M. and Kalko E.K.V. 2007. Ecological niche and phylogeny: the highly complex echolocation behavior of the trawling long-legged bat, Macrophyllum macrophyllum. Behav. Ecol. Sociobiol. 61: 1337–1348.
Wendeln M.C., Runkle J.R., and Kalko E.K.V. 2000. Nutritional value of 14 fig species and bat feeding preferences in Panama. Biotropica, 32: 489–501.

Information & Authors

Information

Published In

cover image Canadian Journal of Zoology
Canadian Journal of Zoology
Volume 96Number 3March 2018
Pages: 171 - 181

History

Received: 22 June 2017
Accepted: 11 September 2017
Accepted manuscript online: 4 October 2017
Version of record online: 4 October 2017

Notes

This review is one of a series of papers arising from “Learning to Listen — Second International Symposium on Bat Echolocation Research: Tools, Techniques, and Analysis” that was held in Tucson, Arizona, USA, 26 March – 1 April 2017. Invited speakers were encouraged to submit manuscripts based on their talks, which then went through the normal Canadian Journal of Zoology peer-review process.

Permissions

Request permissions for this article.

Key Words

  1. Barro Colorado Island
  2. guild
  3. echolocation strategy
  4. bat
  5. niche differentiation

Mots-clés

  1. Île Barro Colorado
  2. guilde
  3. stratégie d’écholocalisation
  4. chauve-souris
  5. différenciation de niche

Authors

Affiliations

Annette Denzinger [email protected]
Animal Physiology, Institute for Neurobiology, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany.
Marco Tschapka
Institute for Evolutionary Ecology and Conservation Genomics, University of Ulm, Albert-Einstein-Allee 11, 89069 Ulm, Germany; Smithsonian Tropical Research Institute, Apartado, P.O. Box 0843-03092, Balboa Ancón, Panamá, Republica de Panama.
Hans-Ulrich Schnitzler
Animal Physiology, Institute for Neurobiology, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany.

Notes

Copyright remains with the author(s) or their institution(s). Permission for reuse (free in most cases) can be obtained from RightsLink.

Metrics & Citations

Metrics

Other Metrics

Citations

Cite As

Export Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

1. Predator–prey interactions between gleaning bats and katydids
2. Learning to listen: a primer on bat echolocation research1

View Options

Get Access

Login options

Check if you access through your login credentials or your institution to get full access on this article.

Subscribe

Click on the button below to subscribe to Canadian Journal of Zoology

Purchase options

Purchase this article to get full access to it.

Restore your content access

Enter your email address to restore your content access:

Note: This functionality works only for purchases done as a guest. If you already have an account, log in to access the content to which you are entitled.

View options

PDF

View PDF

Full Text

View Full Text

Media

Media

Other

Tables

Share Options

Share

Share the article link

Share on social media