Cookies Notification

We use cookies to improve your website experience. To learn about our use of cookies and how you can manage your cookie settings, please see our Cookie Policy.
×

Depositional setting, fossil flora, and paleoenvironment of the Early Eocene Falkland site, Okanagan Highlands, British Columbia

Publication: Canadian Journal of Earth Sciences
19 November 2009

Abstract

The fossil flora and depositional setting of the Early Eocene Falkland site in the southern interior of British Columbia, Canada, is reported in detail for the first time, using a census sampling approach. The Falkland site is part of the series of Okanagan Highlands fossil localities in British Columbia and Washington State that represent relatively cool upland environments within the context of the greenhouse world of the Early Eocene, providing microthermal (mean annual temperature (MAT) < 13 °C) climatic conditions for the establishment of cool-adapted plants geographically adjacent to subtropical elements from lowland floras. Plant community composition of the Falkland flora is most similar to the Republic (Washington) and McAbee (British Columbia) floras based on high Sørenson similarity coefficients, together forming a southern cluster of Okanagan Highlands sites. The site is a lacustrine deposit that formed in a volcanically active landscape. Paleoclimate reconstructions based on leaf physiognomy characterize the site as microthermal (MAT 8.9 ± 2.0 °C by leaf margin analysis or 11.9 ± 2.0 °C by climate leaf analysis multivariate program (CLAMP)), mesic (mean annual precipitation (MAP) 114 cm/year), and equable (cold month mean temperature (CMMT) 3.0 ± 2.0 °C). Paleoelevation of the site is estimated to be similar to or slightly higher than modern levels (>1.3 km) during the Early Eocene. The Falkland locality adds new data to the temporal, latitudinal, and altitudinal gradients of the Okanagan Highlands series, reflecting the regional landscape of northwestern North America during the warmest period of the Cenozoic.

Résumé

La flore fossile et le milieu de dépôts de la localité de Falkland de l’Éocène précoce, dans le sud de l’arrière-pays britanno-colombien (Canada) sont documentés en détail pour la première fois, à l’aide d’une approche de recensement. La localité de Falkland fait partie de la série de localités fossilifères des hautes terres de l’Okanagan, en Colombie-Britannique et dans l’État de Washington, qui représentent des milieux de terres hautes relativement frais, dans le contexte de l’effet de serre planétaire qui caractérisait l’Éocène précoce, auxquels sont associées des conditions climatiques microthermiques (TAM < 13 °C) propices à l’établissement de plantes adaptées aux milieux frais juxtaposées géographiquement à des éléments subtropicaux de flores de terres basses. Des coefficients de similitude de Sørenson élevés indiquent que la composition floristique de la localité de Falkland s’apparente le plus aux flores des localités de Republic (Washington) et McAbee (Colombie-Britannique), et ensemble, ces flores définissent un groupement méridional de localités des hautes terres de l’Okanagan. La localité représente un dépôt lacustre formé dans un milieu de volcanisme actif. Les reconstitutions paléoclimatiques reposant sur la physionomie des feuilles indiquent que la localité représente un environnement microthermique (TAM = 8,9 ± 2,0 °C, selon l’analyse des bordures de feuilles, ou 11,9 ± 2,0 °C, selon CLAMP), mésoique (PAM = 114 cm/année) et modéré (température moyenne du mois le plus froid = 3,0 ± 2,0 °C). Il est estimé que la paléoaltitude du site durant l’Éocène précoce était semblable ou légèrement supérieure à son altitude actuelle (> 1,3 km). La localité de Falkland fournit de nouvelles données permettant de mieux cerner les gradients temporels, latitudinaux et altitudinaux de la série des hautes terres de l’Okanagan, qui reflètent le paysage régional du nord-ouest de l’Amérique du Nord durant la période la plus chaude du Cénozoïque.

Get full access to this article

View all available purchase options and get full access to this article.

References

Archibald, S.B. 2005. New Dinopanorpidae (Insecta: Mecoptera) from the Eocene Okanagan Highlands (British Columbia, Canada and Washington State, USA). Canadian Journal of Earth Sciences, 42(2): 119–136.
Archibald, S.B., and Greenwood, D.R. 2005. The Okanagan Highlands: Eocene biota, environments, and geological setting, southern British Columbia, Canada and northeastern Washington, USA. Canadian Journal of Earth Sciences, 42(2): 111–114.
Arnold, C.A. 1955. Tertiary conifers from the Princeton coal field of British Columbia. Contributions from the Museum of Paleontology University of Michigan, 12: 245–258.
Axelrod, D.I. 1965. A method for determining the altitudes of Tertiary floras. Paleobotanist, 14: 144–171.
Basinger, J.F., and Rothwell, G.W. 1977. Anatomically preserved plants from Middle Eocene (Allenby Formation) of British-Columbia. Canadian Journal of Botany, 55(14): 1984–1990.
Bohacs, K.M., Carroll, A.R., Neal, J.E., and Mankiewicz, P.J. 2000. Lake-basin type, source potential, and hydrocarbon character: an integrated sequence-stratigraphic-geochemical framework. In Lake basins through space and time. Edited by E.H. Gierlowski-Kordesch and K.R. Kelts. AAPG (American Association of Petroleum Geologists) Studies in Geology 46, pp. 3–34.
Breitsprecher, K. 2002. Volcanic stratigraphy, petrology and tectonic setting of the eastern margin of the Eocene Kamloops Group, south-central British Columbia. M.Sc. thesis, Simon Fraser University, Burnaby, B.C.
Breitsprecher, K., Thorkelson, D.J., Schwab, D.L., and Thompson, R.I. 2000. Volcanic stratigraphy and petrology of the eastern margin of the Kamloops Group near Enderby, British Columbia. In Current research. Geological Survey of Canada, 2000-A17, pp. 1–7.
Burnham, R.J. 1989. Relationships between standing vegetation and leaf litter in a paratropical forest: implications for paleobotany. Review of Palaeobotany and Palynology, 58(1): 5–32.
Burnham, R.J., Wing, S.L., and Parker, G.G. 1992. The reflection of deciduous forest communities in leaf litter: implications for autochthonous litter assemblages in the fossil record. Paleobiology, 18: 30–49.
Burnham, R.J., Pitman, N.A.C., Johnson, K.R., and Wilf, P. 2001. Habitat-related error in estimating temperatures from leaf margins in a humid tropical forest. American Journal of Botany, 88(6): 1096–1102.
Carroll, A.R., and Bohacs, K.M. 1999. Stratigraphic classification of ancient lakes: balancing tectonic and climatic controls. Geology, 27(2): 99–102.
Cevallos-Ferriz, S., Erwin, D.M., and Stockey, R.A. 1993. Further observations on Paleorosa similkameenensis (Rosaceae) from the Middle Eocene Princeton chert of British Columbia, Canada. Review of Palaeobotany and Palynology, 78(3–4): 277–291.
Clark, M.K. 2007. The significance of paleotopography. Reviews in Mineralogy and Geochemistry, 66(1): 1–21.
Daughtry, K.L., and Thompson, R.I. (Compilers). 2004. Geology, Westwold, British Columbia. Geological Survey of Canada, Open File 4374, scale 1 : 50 000.
Dawson, G.M. 1895. Report on the area of the Kamloops map-sheet, British Columbia. Geological Survey of Canada, Annual Report 7, pp. 3B–427B.
DeVore, M.L., and Pigg, K.B. 2007. A brief review of the fossil history of the family Rosaceae with a focus on the Eocene Okanogan Highlands of eastern Washington State, USA, and British Columbia, Canada. Plant Systematics and Evolution, 266(1–2): 45–57.
DeVore, M.L., Pigg, K.B., and Wehr, W.C. 2005. Systematics and phytogeography of selected Eocene Okanagan Highlands plants. Canadian Journal of Earth Sciences, 42(2): 205–214.
Dillhoff, R.M., Leopold, E.B., and Manchester, S.R. 2005. The McAbee flora of British Columbia and its relation to the Early–Middle Eocene Okanagan Highlands flora of the Pacific Northwest. Canadian Journal of Earth Sciences, 42(2): 151–166.
Ellis, B., Daly, D.C., Hickey, L.J., Johnson, K.R., Mitchell, J.D., Wilf, P., and Wing, S.L. 2009. Manual of leaf architecture. Cornell University Press, Ithaca, in association with The New York Botanical Garden Press, New York.
Erwin, D.M., and Stockey, R.A. 1991. Silicified monocotyledons from the Middle Eocene Princeton chert (Allenby Formation) of British Columbia, Canada. Review of Palaeobotany and Palynology, 70(1–2): 147–162.
Erwin, D.M., and Stockey, R.A. 1994. Permineralized monocotyledons from the Middle Eocene Princeton chert (Allenby Formation) of British Columbia – Arecaceae. Palaeontographica Abteilung B, 234: 19–40.
Ewing, T.E. 1981. Regional stratigraphy and structural setting of the Kamloops Group, south-central British Columbia. Canadian Journal of Earth Sciences, 18: 1464–1477.
Greenwood, D.R. 2005. Leaf margin analysis: taphonomic constraints. Palaios, 20(5): 499–506.
Greenwood, D.R., and Wing, S.L. 1995. Eocene continental climates and latitudinal temperature gradients. Geology, 23(11): 1044–1048.
Greenwood, D.R., Archibald, S.B., Mathewes, R.W., and Moss, P.T. 2005. Fossil biotas from the Okanagan Highlands, southern British Columbia and northeastern Washington State: climates and ecosystems across an Eocene landscape. Canadian Journal of Earth Sciences, 42(2): 167–185.
Greenwood, D.R., Basinger, J.F., and Smith, R.Y. 2010. How wet was the Arctic Eocene rain forest? Estimates of precipitation from Paleogene Arctic macrofloras. Geology, 38(1): 15–18.
Haq, B.U., Hardenbol, J., and Vail, P.R. 1987. Chronology of fluctuating sea levels since the Triassic. Science, 235(4793): 1156–1167.
Hills, L.V., and Baadsgaard, H. 1967. Potassium–argon dating of some lower Tertiary strata in British Columbia. Bulletin of Canadian Petroleum Geology, 15: 138–149.
Iglesias, A., Wilf, P., Johnson, K.R., Zamuner, A.B., Cúneo, N.R., Matheos, S.D., and Singer, B.S. 2007. A Paleocene lowland macroflora from Patagonia reveals significantly greater richness than North American analogs. Geology, 35(10): 947–950.
Johnson, K.R. 1996. The role of the Republic flora in documenting the floristic evolution of the Northern Hemisphere. Washington Geology, 24: 41–42.
Kowalski, E., and Dilcher, D.L. 2003. Warmer paleotemperatures for terrestrial ecosystems. Proceedings of the National Academy of Sciences, 100(1): 167–170.
Little, S.A., and Stockey, R.A. 2003. Vegetative growth of Decodon allenbyensis (Lythraceae) from the Middle Eocene Princeton Chert with anatomical comparisons to Decodon verticillatus. International Journal of Plant Sciences, 164(3): 453–469.
Little, S.A., Stockey, R.A., and Penner, B. 2009. Anatomy and development of fruits of Lauraceae from the Middle Eocene Princeton Chert. American Journal of Botany, 96(3): 637–651.
Mathews, W.H. 1964. Potassium–argon age determination of Cenozoic volcanic rocks from British Columbia. Geological Society of America Bulletin, 75(5): 465–468.
Mathews, W.H. 1991. Physiographic evolution of the Canadian Cordillera. In Geology of the Cordilleran Orogen in Canada. Edited by H. Gabrielse and C.J. Yorath. Geological Survey of Canada, Geology of Canada, No. 4, pp. 403–418.
McMillan, M.E., Heller, P.L., and Wing, S.L. 2006. History and causes of post-Laramide relief in the Rocky Mountain orogenic plateau. Geological Society of America Bulletin, 118(3): 393–405.
Meyer, H. 1992. Lapse rates and other variables applied to estimating paleoaltitudes from fossil floras. Palaeogeography, Palaeoclimatology, Palaeoecology, 99(1–2): 71–99.
Meyer, H. 2007. A review of paleotemperature-lapse rate methods for estimating paleoelevation from fossil floras. Reviews in Mineralogy and Geochemistry, 66(1): 155–171.
Moss, P.T., Greenwood, D.R., and Archibald, S.B. 2005. Regional and local vegetation community dynamics of the Eocene Okanagan Highlands (British Columbia – Washington State) from palynology. Canadian Journal of Earth Sciences, 42(2): 187–204.
Mustard, P.S., and Rouse, G.E. 1994. Stratigraphy and evolution of Tertiary Georgia Basin and subjacent Upper Cretaceous sedimentary rocks, southwestern British Columbia and northwestern Washington. In Geology and geological hazards of the Vancouver region, southwestern British Columbia. Edited by J.W.H. Monger. Geological Survey of Canada, Bulletin 481, pp. 97–169.
Mustoe, G.E., and Gannaway, W.L. 1997. Paleogeography and paleontology of the Early Tertiary Chuckanut Formation, Northwest Washington. Washington Geology, 25: 3–18.
Ogg, J.G., Ogg, G., and Gradstein, F.M. 2008. The concise geologic time scale. Cambridge University Press, Cambridge, UK.
Pigg, K.B., and Wehr, W.C. 2002. Tertiary flowers, fruits, and seeds from Washington State and adjacent areas — Part III. Washington Geology, 30: 3–16.
Radtke, M.G., Pigg, K.B., and Wehr, W.C. 2005. Fossil Corylopsis and Fothergilla leaves (Hamamelidaceae) from the lower Eocene flora of Republic, Washington, U.S.A., and their evolutionary and biogeographic significance. International Journal of Plant Sciences, 166(2): 347–356.
Read, P.B. 1996. Kamloops to Vernon: Tertiary stratigraphy and structure, industrial mineral and precious metal potentials, Kamloops, Vernon, and Nicola mining divisions. B.C. Geological Branch Survey Division, Assessment Report 25361.
Rice, H.M.A. 1959. Fossil Bibionidae (Diperta) from British Columbia. Geological Survey of Canada, Bulletin 55.
Rouse, G.E., and Mathews, W.H. 1961. Radioactive dating of Tertiary plant-bearing deposits. Science, 133(3458): 1079–1080.
Royer, D.L. 2008. Linkages between CO2, climate, and evolution in deep time. Proceedings of the National Academy of Sciences, 105(2): 407–408.
Royer, D.L., Kooyman, R.M., Little, S.A., and Wilf, P. 2009. Ecology of leaf teeth: a multi-site analysis from an Australian subtropical rainforest. American Journal of Botany, 96(4): 738–750.
Smith, S.Y., and Stockey, R.A. 2003. Aroid seeds from the Middle Eocene Princeton chert (Keratosperma allenbyense, Araceae): comparisons with extant Lasioideae. International Journal of Plant Sciences, 164(2): 239–250.
Smith, S.Y., Stockey, R.A., Nishida, H., and Rothwell, G.W. 2006. Trawetsia princetonensis gen. et sp. nov. (Blechnaceae): a permineralized fern from the Middle Eocene Princeton chert. International Journal of Plant Sciences, 167(3): 711–719.
Spicer, R.A., Harris, N.B.W., Widdowson, M., Herman, A.B., Guo, S., Valdes, P.J., Wolfe, J.A., and Kelley, S.P. 2003. Constant elevation over southern Tibet over the past 15 million years. Nature, 421(6923): 622–624.
Spicer, R.A., Herman, A.B., and Kennedy, E.M. 2005. The sensitivity of CLAMP to taphonomic loss of foliar physiognomic characters. Palaios, 20(5): 429–438.
Thompson, R.I., and Beatty, T.W. 2004. (Compilers). Geology, Monte Creek, British Columbia. Geological Survey of Canada, Open File 4381, scale 1 : 50 000.
Thompson, R.I., Glombick, P., Erdmer, P., Heaman, L.M., Lemieux, Y., and Daughtry, K.L. 2006. Evolution of the ancestral Pacific margin, southern Canadian Cordillera: insights from new geologic maps. In Paleozoic evolution and metallogeny of pericratonic terranes at the ancient Pacific margin of North America, Canadian and Alaskan Cordillera. Edited by M. Colpron and J.L. Nelson. Geological Association of Canada, Special Paper 45, pp. 433–482.
Tribe, S. 2005. Eocene paleo-physiography and drainage directions, southern interior plateau, British Colmbia. Canadian Journal of Earth Sciences, 42(2): 215–230.
Villeneuve, M., and Mathewes, R. 2005. An Early Eocene age for the Quilchena fossil locality, southern British Columbia. In Current research. Geological Survey of Canada, 2005-A4, 9 p.
Wehr, W.C. 1995. Early Tertiary flowers, fruits, and seeds from Washington State and adjacent areas. Washington Geology, 23: 3–16.
Wehr, W.C., and Manchester, S.R. 1996. Paleobotanical significance of the Eocene flowers, fruits, and seeds from Republic, Washington. Washington Geology, 24: 25–27.
Wilf, P. 1997. When are leaves good thermometers? A new case for leaf margin analysis. Paleobiology, 23: 373–390.
Wilf, P., Wing, S.L., Greenwood, D.R., and Greenwood, C.L. 1998. Using fossil leaves as paleoprecipitation indicators: an Eocene example. Geology, 26(3): 203–206.
Wilf, P., Cúneo, N.R., Johnson, K.R., Hicks, J.F., Wing, S.L., and Obradovich, J.D. 2003. High plant diversity in Eocene South America: evidence from Patagonia. Science, 300(5616): 122–125.
Wilf, P., Johnson, K.R., Cúneo, N.R., Smith, M.E., Singer, B.S., and Gandolfo, M.A. 2005. Eocene plant diversity at Laguna del Hunco and Río Pichileufú, Patagonia, Argentina. American Naturalist, 165(6): 634–650.
Wilson, M.V.H. 1977. Paleoecology of Eocene lacustrine varves at Horsefly, British Columbia. Canadian Journal of Earth Sciences, 14: 953–962.
Wilson, M.V.H. 1980. Eocene lake environments: depth and distance from shore variation in fish, insect, and plant assemblages. Palaeogeography, Palaeoclimatology, Palaeoecology, 32: 21–44.
Wilson, M.V.H. 1996. Taphonomy of a mass-death layer of fishes in the Paleocene Paskapoo Formation at Joffre Bridge, Alberta, Canada. Canadian Journal of Earth Sciences, 33: 1487–1498.
Wing, S.L., and Greenwood, D.R. 1993. Fossils and fossil climates: the case for equable continental interiors in the Eocene. Philosophical Transactions of the Royal Society (of London) Series B: Biological Sciences, 341(1297): 243–253.
Wolfe, J.A. 1979. Temperature parameters of humid to mesic forests of eastern Asia and relations to forests of other regions of the Northern Hemisphere and Australasia. United States Geological Survey, Professional paper 1106.
Wolfe, J.A. 1992. An analysis of present day terrestrial lapse rates in the western coterminous United States and their significance to paleoaltitudinal estimates. United States Geological Survey, Bulletin 1964.
Wolfe, J.A. 1993. A method of obtaining climatic parameters from leaf assemblages. United States Geological Survey, Bulletin 2040.
Wolfe, J.A. 1994. Tertiary climatic changes at middle latitudes of western North America. Palaeogeography, Palaeoclimatology, Palaeoecology, 108(3–4): 195–205.
Wolfe, J.A., and Wehr, W.C. 1987. Middle Eocene dicotyledonous plants from Republic, Northeastern Washington. United States Geological Survey, Bulletin 1597.
Wolfe, J.A., and Wehr, W.C. 1991. Significance of the Eocene fossil plants at Republic, Washington. Washington Geology, 19: 18–24.
Wolfe, J.A., Forest, C.E., and Molnar, P. 1998. Paleobotanical evidence of Eocene and Oligocene paleoaltitudes in midlatitude western North America. Geological Society of America Bulletin, 110(5): 664–678.
Wolfe, J.A., Gregory-Wodzicki, K.M., Molnar, P., and Mustoe, G.E. 2000. Paleobotanical evidence for the development of high altitudes during the early Eocene in northwestern North America. Geologiska Föreningens Färhandhinger (GFF), 122(1): 186–187.
Zachos, J.C., Pagani, M., Sloan, L., Thomas, E., and Billups, K. 2001. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science, 292(5517): 686–693.
Zachos, J.C., Dickens, G.R., and Zeebe, R.E. 2008. An early Cenozoic perspective on greenhouse warming and carbon cycle dynamics. Nature, 451(7176): 279–283.

Information & Authors

Information

Published In

cover image Canadian Journal of Earth Sciences
Canadian Journal of Earth Sciences
Volume 46Number 11November 2009
Pages: 811 - 822
Editor: Jisuo Jin

History

Received: 6 May 2009
Accepted: 25 September 2009
Version of record online: 19 November 2009

Permissions

Request permissions for this article.

Authors

Affiliations

Department of Geological Sciences, University of Saskatchewan, 114 Science Place, Saskatoon, SK S7N 5E2, Canada.
James F. Basinger
Department of Geological Sciences, University of Saskatchewan, 114 Science Place, Saskatoon, SK S7N 5E2, Canada.
David R. Greenwood
Department of Biology, Brandon University, 270 18th Street, Brandon, MB R7A 6A9, Canada.

Notes

Metrics & Citations

Metrics

Other Metrics

Citations

Cite As

Export Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

1. Distribution and Morphological Diversity of Palaeocarpinus (Betulaceae) from the Paleogene of the Northern Hemisphere
2. DYNAMICS OF DEPOSITION AND FOSSIL PRESERVATION AT THE EARLY EOCENE OKANAGAN HIGHLANDS OF BRITISH COLUMBIA, CANADA: INSIGHTS FROM ORGANIC GEOCHEMISTRY
3. Fossil Dennstaedtiaceae and Hymenophyllaceae from the Early Eocene of the Pacific Northwest
4. Incorporating lateral variability and extent of paleosols into proxy uncertainty
5. Detrital zircon U–Pb ages and Hf-isotopes from Eocene intermontane basin deposits of the southern Canadian Cordillera
6. Laramide Orogenesis Driven by Late Cretaceous Weakening of the North American Lithosphere
7. A new genus and species of split-footed lacewings (Neuroptera) from the early Eocene of western Canada and revision of the subfamily affinities of Mesozoic Nymphidae
8. On geologic timescales, plant carbon isotope fractionation responds to precipitation similarly to modern plants and has a small negative correlation with pCO2
9. Paleobotanical proxies for early Eocene climates and ecosystems in northern North America from middle to high latitudes
10. Extinct genus Lagokarpos reveals a biogeographic connection between Tibet and other regions in the Northern Hemisphere during the Paleogene
11. Early Eocene (Ypresian) birds from the Okanagan Highlands, British Columbia (Canada) and Washington State (USA)
12. Plant community ecology and climate on an upland volcanic landscape during the Early Eocene Climatic Optimum: McAbee Fossil Beds, British Columbia, Canada
13. Warm Terrestrial Subtropics During the Paleocene and Eocene: Carbonate Clumped Isotope (Δ 47 ) Evidence From the Tornillo Basin, Texas (USA)
14. Volcaniclastic lithostratigraphy and paleoenvironment of the lower Eocene McAbee fossil beds, Kamloops Group, British Columbia, Canada
15.
16. Eocene paleobotanical altimetry of Victoria's Eastern Uplands
17. Paleoclimate and precipitation seasonality of the Early Eocene McAbee megaflora, Kamloops Group, British Columbia1
18. A window into mid-latitudinal Early Eocene environmental variability: a high-resolution palynological analysis of the Falkland site, Okanagan Highlands, British Columbia, Canada1
19. A review of paleobotanical studies of the Early Eocene Okanagan (Okanogan) Highlands floras of British Columbia, Canada, and Washington, USA1
20. Eocene paleontology and geology of western North America1
21. New early Eocene Siricomorpha (Hymenoptera: Symphyta: Pamphiliidae, Siricidae, Cephidae) from the Okanagan Highlands, western North America
22. Fossil palm beetles refine upland winter temperatures in the Early Eocene Climatic Optimum
23. Estimating paleoenvironments using ecological niche models of nearest living relatives: A case study of Eocene Aesculus L.
24. The Eocene Thomas Ranch flora, Allenby Formation, Princeton, British Columbia, Canada
25. The Eocene apex of panorpoid scorpionfly family diversity
26. A Review of the Fossil Record of the Genus Itea (Iteaceae, Saxifragales) with Comments on its Historical Biogeography
27. Seasonality, montane beta diversity, and Eocene insects: Testing Janzen's dispersal hypothesis in an equable world
28. Climate Reconstruction from Leaf Size and Shape: New Developments and Challenges
29. Early Eocene plant diversity and dynamics in the Falkland flora, Okanagan Highlands, British Columbia, Canada
30. Intercontinental dispersal of giant thermophilic ants across the Arctic during early Eocene hyperthermals
31. Sensitivity of leaf size and shape to climate: global patterns and paleoclimatic applications
32. The early Eocene equable climate problem revisited
33. The early Eocene equable climate problem revisited
34. Estimating paleoatmospheric pCO2 during the Early Eocene Climatic Optimum from stomatal frequency of Ginkgo, Okanagan Highlands, British Columbia, Canada

View Options

Login options

Check if you access through your login credentials or your institution to get full access on this article.

Subscribe

Click on the button below to subscribe to Canadian Journal of Earth Sciences

Purchase options

Purchase this article to get full access to it.

Restore your content access

Enter your email address to restore your content access:

Note: This functionality works only for purchases done as a guest. If you already have an account, log in to access the content to which you are entitled.

View options

PDF

View PDF

Full Text

View Full Text

Media

Tables

Media

Share Options

Share

Share the article link

Share on social media