Cookies Notification

We use cookies to improve your website experience. To learn about our use of cookies and how you can manage your cookie settings, please see our Cookie Policy.

Effect of pressurized grouting on pullout resistance and group efficiency of compression ground anchor

Publication: Canadian Geotechnical Journal
23 July 2012


The purpose of this study is to investigate the effect of pressurized grouting on pullout resistance and the group effect of the compression ground anchor by performing pilot-scale laboratory chamber tests and field tests. The laboratory test results show that the enlargement of the anchor body diameter estimated theoretically by combining the cavity expansion theory and grout penetration characteristics matches reasonably well with that obtained from experiments. The required injection time as a function of the coefficient of permeability of the ground is proposed. The results of a series of field anchor pullout tests show that the effect of pressurized grouting is more prominent in a softer ground with a smaller SPT-N value for an increase in both anchor body diameter and pullout resistance. The pressurized grouting effect in comparison with gravitational grouting was found to be almost zero if the SPT-N value is more than 50. Based on experimental results, a new equation to estimate the pullout resistance as a function of the SPT-N60 value is proposed. In addition, based on in situ group anchor pullout test results, a new group effect equation is proposed.


L’objectif de cette étude est d’évaluer l’effet du coulis pressurisé sur la résistance au retrait ainsi que l’effet de groupe d’ancrages en compression dans le sol par la réalisation d’essais en laboratoire en chambre à l’échelle pilote et d’essais sur le terrain. Les résultats des essais en laboratoire ont démontré que l’agrandissement du diamètre du corps de l’ancrage estimé théoriquement en combinant la théorie de l’expansion des cavités et les caractéristiques de pénétration du coulis correspond de façon raisonnable avec celui obtenu à partir d’essais. Le temps d’injection nécessaire, en fonction de la perméabilité du sol, a été proposé. Les résultats d’une série d’essais de retrait d’ancrages de terrain ont démontré que l’effet du coulis pressurisé est plus évident dans un sol plus mou avec une valeur de SPT-N plus faible, autant pour l’augmentation du diamètre du corps de l’ancrage que pour la résistance au retrait. L’effet du coulis pressurisé, comparativement au coulis gravitaire, a été déterminé comme presque nul si la valeur de SPT-N est supérieure à 50. À partir des résultats expérimentaux, une nouvelle équation servant à estimer la résistance au retrait en fonction de la valeur de SPT-N60 est proposée. De plus, une nouvelle équation sur l’effet de groupe est proposée, basée sur les résultats d’essais de retrait in situ effectués sur un groupe d’ancrages.

Get full access to this article

View all available purchase options and get full access to this article.


Ahn, S.H. 1998. The measurement of SPT rod energy transfer ratio using PDA. M.D. thesis, Seoul, Korea University, Korea. [In Korean.]
Arya, L.M., and Dierolf, T.S. 1989. Predicting soil moisture characteristics from particle-size distributions: An improved method to calculate pore radii from particle radii. In Indirect methods for estimating the hydraulic properties of unsaturated soils. Edited by M.T. Van Genuchten and F.J. Leij. U.S. Salinity Laboratory, Riverside, Calif. pp. 115–124.
Bishop R.F., Hill R., and Mott N.F. 1945. Theory of indentation and hardness tests. Proceedings of the Physical Society, 57(3): 147–159.
FHWA. 1999. Ground anchors and anchored systems. Geotechnical engineering circular No. 4, FHWA-IF-99-015. Federal Highway Administration (FHWA), Washington, D.C.
Gibson R.E. and Anderson W.F. 1961. In-situ measurement of soil properties with pressuremeter. Civil Engineering and Public Works Review, 56: 615–618.
Habib, P. 1989. Recommendations for the design, calculation, construction and monitoring of ground anchors. Balkema, Rotterdam, the Netherlands.
Hanna T.H., Sparks R., and Yilmaz M. 1972. Anchor behavior in sand. Journal of the Soil Mechanics and Foundations Division, ASCE, 98(11): 1187–1207.
Hill, R. 1950. The mathematical theory of plasticity. Oxford University Press.
Hobst, I.L., and Zajic, I.J. 1983. Anchoring in rock and soil. 2nd ed. Elsevier Scientific Publishing, Amsterdam.
Hossain M.A. and Yin J.-H. 2010. Shear strength and dilative characteristics of an unsaturated compacted completely decomposed granite soil. Canadian Geotechnical Journal, 47(10): 1112–1126.
Jaeger, J.C., Cook, N.G.W., and Zimmerman, R.W. 2006. Fundamentals of rock mechanics. Blackwell Publishing.
JGS. 2000. JGS4101–2000: Design and construction standards on ground anchor. Japanese Geotechnical Society (JGS), Japan. [In Japanese.]
Kim J.-S., Lee I.-M., Jang J.-H., and Choi H. 2009. Groutability of cement-based grout with consideration of viscosity and filtration phenomenon. International Journal for Numerical and Analytical Methods in Geomechanics, 33(16): 1771–1797.
Kleyner I. and Krizek R.J. 1995. Mathematical model for bore-injected cement grout installations. Journal of Geotechnical Engineering, 121(11): 782–788.
Kleyner, I.M., Krizek, R.J., and Pepper, S.F. 1993. Influence of grout pressure on capacity of bore-injected piles and anchors. In Proceedings of the International Conference on Grouting in Rock and Concrete, Salzburg, Austria. pp. 159–165.
Littlejohn, G.S. 1990. Ground anchorage practice. In Proceedings of a Conference on Design and Performance of Earth Retaining Structures, ASCE, Cornell University. Ithaca, N.Y. pp. 629–733.
Reddi L.N. and Bonala M.V.S. 1997. Analytical solution for fine particle accumulation in soil filters. Journal of Geotechnical Engineering, 123(12): 1143–1152.
Salgado R. and Prezzi M. 2007. Computation of cavity expansion pressure and penetration resistance in sands. International Journal of Geomechanics, 7(4): 251–265.
Shelke A. and Patra N.R. 2008. Effect of arching on uplift capacity of pile groups in sand. International Journal of Geomechanics, 8(6): 347–354.
Su L.J., Yin J.H., and Zhou W.H. 2010. Influences of overburden pressure and soil dilation on soil nail pull-out resistance. Computers and Geotechnics, 37(4): 555–564.
Ueyama Y. 1969a. PS anchor behaviour in sand. Civil Construction, 10(5): 26–35. [In Japanese.]
Ueyama Y. 1969b. PS anchor behaviour in sand. Civil Construction, 10(6): 24–34. [In Japanese.]
Vesic A.S. 1972. Expansion of cavities in infinite soil mass. Journal of the Geotechnical Engineering Division, ASCE, 98(SM3): 265–288.
Wang Y. and Dusseault M.B. 1991. Borehole yield and hydraulic fracture initiation in poorly consolidated strata. Part I. Impermeable media. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 28(4): 235–246.
Yin J.H. and Zhou W.H. 2009. Influence of grouting pressure and overburden stress on the pullout resistance of a soil nail. Journal of Geotechnical and Geoenvironmental Engineering, 135(9): 1198–1208.
Yin J.H., Su L.J., Cheung R.W.M., Shiu Y.K., and Tang C. 2008. The influence of grouting pressure on the pullout resistance of soil nail in compacted completely decomposed granite fill. Géotechnique, 59(2): 103–113.
Yu H.S. and Houlsby G.T. 1991. Finite cavity expansion in dilatants soils: loading analysis. Géotechnique, 41(2): 173–183.

Information & Authors


Published In

cover image Canadian Geotechnical Journal
Canadian Geotechnical Journal
Volume 49Number 8August 2012
Pages: 939 - 953


Received: 8 December 2010
Accepted: 28 January 2012
Version of record online: 23 July 2012


Request permissions for this article.

Key Words

  1. compression ground anchor
  2. pressurized grouting
  3. pullout resistance
  4. grout consolidation model
  5. group effect


  1. ancrages de compression dans le sol
  2. coulis pressurisé
  3. résistance au retrait
  4. modèle de consolidation du coulis
  5. effet de groupe



Seok-Won Lee [email protected]
Department of Civil and Environmental System Engineering, Konkuk University, Seoul, Korea.
Tea-Seob Kim
Shinwha Soil Tech. Co., Ltd., Seoul, Korea.
Bo-Kyoung Sim
Hyundai Engineering & Construction Co., Ltd., Seoul, Korea.
Jong-Sun Kim
Lotte Engineering & Construction Co., Ltd., Seoul, Korea.
In-Mo Lee
School of Civil, Environmental and Architectural Engineering, Korea University, 1 Anam-dong, Seongbuk-gu, Seoul 136-701, Korea.

Metrics & Citations


Other Metrics


Cite As

Export Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

1. Micro-mechanical analysis of tunnel face grouting reinforcement combined with critical potential failure model
2. Multiparameter Experimental Study on the Factor Contributions of Micropile Uplift Capacity Using Taguchi Approach
3. Seismic analysis of post-tensioned concrete gravity dams using scaled boundary finite elements implemented as ABAQUS UEL
4. Interpretation of grouting characteristics in unsaturated sand from the perspective of water–air interface
5. Influence of Grout’s Poisson Effect on Interfacial Shear Stress for Compression Anchor in Rock Mass
6. Elastoplastic solution of drained expansion of a cylindrical cavity in structured soils considering structure degradation
7. Performance Tests on Pressure-Dispersed Compression Anchors in Cohesive Soils
8. GFRP as an alternative for steel nails, development of a model for prediction of creep displacements using experimental tests
9. Effects of High CaO Fly Ash and Sulfate Activator as a Finer Binder for Cementless Grouting Material
10. Experimental Investigation of Bond Stress and Creep Displacements of GFRP Soil Nails Simulated in a Soil Box
11. Use of photo-based 3D photogrammetry in analysing the results of laboratory pressure grouting tests
12. Full-scale pullout tests and analyses of ground anchors in rocks under ultimate load conditions
14. Particle image velocimetry study of displacement field in granular continua under axisymmetric conditions
15. Experimental investigation of pressure grouting in sand

View Options

Get Access

Login options

Check if you access through your login credentials or your institution to get full access on this article.


Click on the button below to subscribe to Canadian Geotechnical Journal

Purchase options

Purchase this article to get full access to it.

Restore your content access

Enter your email address to restore your content access:

Note: This functionality works only for purchases done as a guest. If you already have an account, log in to access the content to which you are entitled.

View options


View PDF

Full Text

View Full Text





Share Options


Share the article link

Share on social media