Cookies Notification

We use cookies to improve your website experience. To learn about our use of cookies and how you can manage your cookie settings, please see our Cookie Policy.
×

Load-carrying capacity of filament-wound E glass/epoxy composite rings

Publication: Transactions of the Canadian Society for Mechanical Engineering
25 September 2018

Abstract

In this study, three different types of E glass/epoxy composite rings were produced by the filament-winding technique: (i) O ring (Type A), (ii) ring with a radial notch (Type B), and (iii) C-shaped ring (Type C). To evaluate the effect of winding angle on the load-carrying capacity of composite rings, five different winding angles were considered: ±45°, ±55°, ±65°, ±75°, and ±88°. The load capacity of the manufactured composite rings in the tensile hoop direction were determined experimentally using a special test fixture. The experimental results showed that the optimum winding angle was ±88° in terms of load-carrying capacity. The rings wound at 55° had the lowest load-carrying capacity. Type A rings had the highest capacity while Type C rings had the lowest.

Résumé

Dans cette étude, trois types différents d’anneaux composites verre/époxy E ont été produits par la technique d’enroulement filamentaire : (i) joint torique (type A), (ii) anneau à encoche radiale (type B) et (iii) C-anneau en forme (type C). Afin d’évaluer l’effet de l’angle d’enroulement sur la capacité de charge des anneaux composites, cinq angles d’enroulement différents, à savoir ± 45°, ± 55°, ± 65°, ± 75° et ± 88°, ont été pris en compte. La capacité de charge des anneaux composites fabriqués dans la direction du cerceau de traction a été déterminée expérimentalement à l’aide d’un dispositif d’essai spécial. Les résultats expérimentaux ont montré que l’angle optimal d’enroulement était obtenu à ± 88° en termes de capacité de charge. Les anneaux enroulés à 55° avaient la plus faible capacité de charge. Les anneaux de type A ont la capacité la plus élevée, tandis que les anneaux de type C ont la plus faible capacité. [Traduit par la Rédaction]

Get full access to this article

View all available purchase options and get full access to this article.

References

Almeida J.H.S., Faria H., Marques A.T., and Amico S.C. 2014. Load sharing ability of the liner in type III composite pressure vessels under internal pressure. J. Reinf. Plast. Comp. 33(24): 2274–2286.
Almeida J.H.S., Ribeiro M.L., Tita V., and Amico S.C. 2016. Damage and failure in carbon/epoxy filament wound composite tubes under external pressure: experimental and numerical approaches. Mater. Des. 96: 431–438.
Almeida J.H.S., Ribeiro M.L., Tita V., and Amico S.C. 2017. Damage modeling for carbon fiber/epoxy filament wound composite tubes under radial compression. Compos. Struct. 160: 204–210.
Almeida J.H.S., Tonatto M.L.P., Ribeiro M.L., Tita V., and Amico S.C. 2018. Buckling and post-buckling of filament wound composite tubes under axial compression: linear, nonlinear, damage and experimental analyses. Compos. B Eng. 149: 227–239.
Arnautov A.K. and Zhmud N.P. 2002. Experimental evaluation of the effect of the structure of composite rings on their properties in the radial direction. Mech. Compos. Mater. 38(6): 505–514.
ASTM D5379/D5379M-12. 2012. Standard test method for shear properties of composite materials by the V-notched beam method. ASTM International, West Conshohocken, PA.
ASTM D3410/D3410M-16. 2016. Standard test method for compressive properties of polymer matrix composite materials with unsupported gage section by shear loading. ASTM International, West Conshohocken, PA.
ASTM D3039/D3039M-17. 2017. Standard test method for tensile properties of polymer matrix composite materials. ASTM International, West Conshohocken, PA.
Chang R.R. 2000. Experimental and theoretical analyses of first-ply failure of laminated composite pressure vessels. Compos. Struct. 49(2): 237–243.
Erdiller, E.S. 2004. Experimental investigation for mechanical properties of filament-wound composite tubes. M.Sc. thesis, Middle East Technical University, Ankara, Turkey.
Filho P.S., Almeida J.H.S., and Amico S.C. 2017. Carbon/epoxy filament wound composite drive shafts under torsion and compression. J. Compos. Mater. 52(8): 1103–1111.
Lee, D.G., and Suh, N.P. 2006. Axiomatic design and fabrication of composite structures: applications in robots, machine tools, and automobiles. Oxford University Press, New York, NY, USA.
Mackerle J. 2005. Finite elements in the analysis of pressure vessels and piping, an addendum: a bibliography (2001–2004). Int. J. Pressure Vessels Piping, 82(7): 571–592.
Pavlopoulou S., Roy S.S., Gautam M., Bradshaw L., and Potluri P. 2017. Numerical and experimental investigation of the hydrostatic performance of fibre reinforced tubes. Appl. Compos. Mater. 24(2): 417–448.
Ribeiro M.L., Vandepitte D., and Tita V. 2013. Damage model and progressive failure analyses for filament wound composite laminates. Appl. Compos. Mater. 20(5): 975–992.
Rosenow M.W.K. 1984. Wind angle effects in glass fibre-reinforced polyester filament wound pipes. Composites, 15(2): 144–152.
Roy A.K. and Massard T.N. 1992. Strength analysis and a design study of thick multilayered composite spherical pressure vessel. J. Reinf. Plast. Comps. 11(5): 479–493.
Sharma A. and Bakis C.E. 2004. Analysis of elastic stresses in thick, polar-orthotropic, C-shaped rings. J. Compos. Mater. 38(18): 1619–1637.
Sharma A. and Bakis C.E. 2006. C-shape specimen for tensile radial strength of thick, filament-wound rings. J. Compos. Mater. 40(2): 97–116.
Shen F.C. 1995. A filament-wound structure technology overview. Mater. Chem Phys. 42: 96–100.
Wuthrich C. 1992. Thick-walled composite tubes under mechanical and hydrothermal loading. Composites, 23(6): 407–413.

Information & Authors

Information

Published In

cover image Transactions of the Canadian Society for Mechanical Engineering
Transactions of the Canadian Society for Mechanical Engineering
Volume 43Number 2June 2019
Pages: 173 - 178

History

Received: 21 May 2018
Accepted: 10 September 2018
Accepted manuscript online: 25 September 2018
Version of record online: 25 September 2018

Permissions

Request permissions for this article.

Key Words

  1. composite
  2. filament winding
  3. ring
  4. strength
  5. hoop testing

Mots-clés

  1. composite
  2. enroulement filamentaire
  3. anneau
  4. force
  5. test de cerceau

Authors

Affiliations

Bertan Beylergil [email protected]
Mechanical Engineering Department, Faculty of Engineering, Alanya Alaaddin Keykubat University, 07450 Alanya/Antalya, Turkey

Notes

Copyright remains with the author(s) or their institution(s). Permission for reuse (free in most cases) can be obtained from RightsLink.

Metrics & Citations

Metrics

Other Metrics

Citations

Cite As

Export Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

1. Acoustic emission detection of filament wound CFRP composite structure damage based on Mel spectrogram and deep learning

View Options

Get Access

Login options

Check if you access through your login credentials or your institution to get full access on this article.

Subscribe

Click on the button below to subscribe to Transactions of the Canadian Society for Mechanical Engineering

Purchase options

Purchase this article to get full access to it.

Restore your content access

Enter your email address to restore your content access:

Note: This functionality works only for purchases done as a guest. If you already have an account, log in to access the content to which you are entitled.

View options

PDF

View PDF

Full Text

View Full Text

Media

Media

Other

Tables

Share Options

Share

Share the article link

Share on social media