Cookies Notification

We use cookies to improve your website experience. To learn about our use of cookies and how you can manage your cookie settings, please see our Cookie Policy.

Microbiological community analysis of vermicompost tea and its influence on the growth of vegetables and cereals

Publication: Canadian Journal of Microbiology
19 June 2012


Vermicompost, the digestion product of organic material by earthworms, has been widely reported to have a more positive effect on plant growth and plant health than conventional compost. A study was conducted to investigate the effects of different vermicompost elutriates (aerated compost teas) on soils and plant growth. The teas were analyzed by chemical, microbiological, and molecular methods accompanied by plant growth tests at laboratory and field scale. The number of microorganisms in the teas increased during the extraction process and was affected by substrate addition. The vermicompost tea found to increase plant growth best under laboratory tests was applied to cereals (wheat and barley) and vegetables (Raphanus sativus, Rucola selvatica, and Pisum sativum) in a field study. The results revealed no effects of tea application on plant yield; however, sensoric tests indicated an improvement in crop quality. The soils from laboratory and field studies were investigated to detect possible microbial or chemical changes. The results indicated that minor changes to the soil microbial community occurred following tea application by foliar spray in both the laboratory-scale and field-scale experiments.


On rapporte que le vermicompost, le produit de la digestion de matériel organique par les vers de terre, exerce des effets positifs sur la croissance et la santé des végétaux supérieurs à ceux du compost conventionnel. Une étude a été réalisée afin d’examiner les effets de différents élutriats de vermicompost (thé de compost aéré) sur les sols et la croissance des végétaux. Les thés ont été analysés à l’aide de méthodes chimiques, microbiologiques et moléculaires, parallèlement à des tests de croissance des végétaux dans le laboratoire et sur le terrain. Le nombre de microorganismes des thés augmentait lors du processus d’extraction et était affecté par l’ajout de substrat. Le thé de vermicompost qui s’est avéré le plus efficace sur le plan de la croissance des végétaux en laboratoire a été appliqué sur des céréales (blé et orge) et des légumes (Raphanus sativus, Rucola selvatica, and Pisum sativum) lors de tests sur le terrain. Les résultats ont révélé que l’application de thé n’avait aucun effet sur le rendement des récoltes; cependant, les tests en sensorique ont indiqué une amélioration de la qualité des récoltes. Les sols étudiés en laboratoire et sur le terrain ont été examinés afin de détecter de possibles changements microbiologiques ou chimiques. Les résultats ont indiqué que des changements mineurs de la communauté microbienne des sols survenaient après une application de thé par vaporisation foliaire tant à l’échelle du laboratoire que sur le terrain.

Get full access to this article

View all available purchase options and get full access to this article.


Alfreider A., Peters S., Tebbe C.C., Rangger A., and Insam H. 2002. Microbial community dynamics during composting of organic matter as determined by 16S ribosomal DNA analysis. Compost Sci. Util. 10: 303–312.
Anderson J.P.E. and Domsch K.H. 1978. A physiological method for the quantitative measurement of microbial biomass in soils. Soil Biol. Biochem. 10(3): 215–221.
Atlas, R.M., and Bartha, R. 1998. Microbial ecology: fundamentals and applications. 4th ed. Benjamin/Cummings, Menlo Park, Calif., USA.
Ausubel, F.M., Brent, R., Kingston, R.E., Moore, D.D., Seidman, J.G., Smith, J.A., and Struhl, K. (Editors). 1997. Current protocols in molecular biology. John Wiley & Sons, N.Y., USA.
Bess V.H. 2000. Understanding compost tea. Biocycle, 10: 71.
Brodie E., Edwards S., and Clipson N. 2003. Soil fungal community structure in a temperate upland grassland soil. FEMS Microbiol. Ecol. 45(2): 105–114.
Cayuela M.L., Mondini C., Insam H., Sinicco T., and Franke-Whittle I.H. 2009. Plant and animal wastes composting: effects of the N source on process performance. Bioresour. Technol. 100(12): 3097–3106.
Chaoui H.I., Zibilske L.M., and Ohno T. 2003. Effects of earthworm casts and compost on soil microbial activity and plant nutrient availability. Soil Biol. Biochem. 35(2): 295–302.
Danon M., Franke-Whittle I.H., Insam H., Chen Y., and Hadar Y. 2008. Molecular analysis of bacterial community succession during prolonged compost curing. FEMS Microbiol. Ecol. 65(1): 133–144.
Dickerson, G.W. 2001. Vermicomposting. Guide H-164. Cooperative Extension Service, College of Agriculture and Home Economics, Las Cruces, New Mexico.
Díez B., Pedrós-Alió C., Marsh T.L., and Massana R. 2001. Application of denaturing gradient gel electrophoresis (DGGE) to study the diversity of marine picoeukaryotic assemblages and comparison of DGGE with other molecular techniques. Appl. Environ. Microbiol. 67(7): 2942–2951.
Dominguez, J., Aira, M., and Gomez-Brandon, M. 2010. Vermicomposting: earthworms enhance the work of microbes. In Microbes at work. From wastes to resources. Edited by H. Insam, I.H. Franke-Whittle, and M. Gobena. Springer, Heidelberg, Germany. pp. 93–114.
Edwards C.A., Arancon N.Q., and Greytak S. 2006. Effects of vermicompost teas on plant growth and disease. Biocycle, 47: 28.
Franke-Whittle I.H., Klammer S., and Insam H. 2005. Design and application of an oligonucleotide microarray for the investigation of compost microbial communities. J. Microbiol. Methods, 62(1): 37–56.
Franke-Whittle I.H., Knapp B.A., Fuchs J., Kaufmann R., and Insam H. 2009. Application of COMPOCHIP microarray to investigate the bacterial communities of different composts. Microb. Ecol. 57(3): 510–521.
Fromin N., Hamelin J., Tarnawski S., Roesti D., Jourdain-Miserez K., Forestier N., et al. 2002. Statistical analysis of denaturing gel electrophoresis (DGE) fingerprinting patterns. Environ. Microbiol. 4(11): 634–643.
Hughes, J.B., and Bohannan, B.J.M. 2001. Application of ecological diversity statistics in microbial ecology. Molecular microbial ecology manual. Kluwer Academic Publishers, the Netherlands.
Ingham, E.R., and Rollins, C.A. 2006. Actively aerated compost teas. In Adding biology — for soil and hydroponic systems. Nature Technologies, LLC, Sonoma. p. 68.
Innerebner G., Knapp B., Vasara T., Romantschuk M., and Insam H. 2006. Traceability of ammonia-oxidizing bacteria in compost-treated soils. Soil Biol. Biochem. 38(5): 1092–1100.
Kim K.-H., Ten L.-N., Liu Q.-M., Im W.-T., and Lee S.-T. 2006. Sphingobacterium daejeonense sp. nov., isolated from a compost sample. Int. J. Syst. Evol. Microbiol. 56(9): 2031–2036.
Kowalchuk G.A., Naoumenko Z.S., Derikx P.J.L., Felske A., Stephen J.R., and Arkhipchenko I.A. 1999. Molecular analysis of ammonia-oxidizing bacteria of the beta subdivision of the class Proteobacteria in compost and composted materials. Appl. Environ. Microbiol. 65(2): 396–403.
Le Bayon R.C. and Binet F. 2006. Earthworms change the distribution and availability of phosphorous in organic substrates. Soil Biol. Biochem. 38(2): 235–246.
Mayer J., Scheid S., Widmer F., Fließbach A., and Oberholzer H.-R. 2010. How effective are ‘Effective microorganisms® (EM)’? Results from a field study in temperate climate. Appl. Soil Ecol. 46(2): 230–239.
Meier, U. 2001. Entwicklungsstadien mono- und dikotyler Pflanzen - BBHC Monographie (Development stages of mono- and dicotyledon plats - BBHC monograhy). Biologische Bundesanstalt für Land und Forstwirtschaft, Berlin and Braunschweig, Germany.
Muyzer, G. 1997. Genetic fingerprinting of microbial communities — present status and future perspectives. In Microbial Biosystems: New Frontiers. Proceedings of the 8th International Symposium on Microbial Ecology, Halifax, Canada, 1–14  August 1998. Edited by C.R. Bell, M. Brylinsky, P. Clark Johnson-Green, Atlantic Canada Society for Microbial Ecology, Halifax, Can.
Muyzer, G., Brinkhoff, T., Nübel, U., Santegoeds, C., and Schäfer, H. 2001. Denaturing gradient gel electrophoresis (DGGE) in microbial ecology. Molecular microbial ecology manual. Kluwer Academic Publishers, the Netherlands.
Nottingham A.T., Griffiths H., Chamberlain P.M., Stott A.W., and Tanner E.V.J. 2009. Soil priming by sugar and leaf-litter substrates: a link to microbial groups. Appl. Soil Ecol. 42(3): 183–190.
Orlikowski, L.B. 1999. Vermicompost extract in the control of some soil borne pathogens. International Symposium on Crop Protection, 64: 405–410.
Palmisano, A.C., and Barlaz, M.A. 1996. Microbiology of solid waste. CRC Press, N.Y., USA.
Pant A.P., Radovich T.J.K., Hue N.V., Talcott S.T., and Krenek K.A. 2009. Vermicompost extracts influence growth, mineral nutrients, phytonutrients and antioxidant activity in pak choi (Brassica rapa cv. Bonsai, Chinensis group) grown under vermicompost and chemical fertiliser. J. Sci. Food Agric. 89(14): 2383–2392.
Scheuerell S.J. and Mahaffee W.F. 2004. Compost tea as a container medium drench for suppressing seedling damping-off caused by Pythium ultimum. Phytopathology, 94(11): 1156–1163.
Smalla K., Wieland G., Buchner A., Zock A., Parzy J., Kaiser S., et al. 2001. Bulk and rhizosphere soil bacterial communities studied by denaturing gradient gel electrophoresis: plant-dependent enrichment and seasonal shifts revealed. Appl. Environ. Microbiol. 67(10): 4742–4751.
Tanahashi T., Murase J., Matsuya K., Hayashi M., Kimura M., and Asakawa S. 2005. Bacterial communities responsible for the decomposition of rice straw compost in a Japanese rice paddy field estimated by DGGE analysis of amplified 16S rDNA and 16S rRNA fragments. Soil Sci. Plant Nutr. 51(3): 351–360.
Van Verseveld, H.W., and Röling, W.F.M. 2001. Cluster analysis and statistical comparison of molecular community profile data. Molecular microbial ecology manual, Kluwer Academic Publishers, the Netherlands.
Zaller J.G. 2006. Foliar spraying of vermicompost extracts: effects on fruit quality and indications of late-blight suppression of field-grown tomatoes. Biol. Agric. Hortic. 24(2): 165–180.

Information & Authors


Published In

cover image Canadian Journal of Microbiology
Canadian Journal of Microbiology
Volume 58Number 7July 2012
Pages: 836 - 847


Received: 21 December 2011
Revision received: 20 March 2012
Accepted: 27 March 2012
Version of record online: 19 June 2012


Request permissions for this article.

Key Words

  1. vermicompost tea
  2. composting
  3. plant growth
  4. microorganisms
  5. microbial community


  1. thé de vermicompost
  2. compostage
  3. croissance végétale
  4. microorganisme
  5. communauté microbienne



J.I. Fritz
Universität für Bodenkultur Wien, Department IFA-Tulln, Konrad Lorenz Str. 20, 3430 Tulln, Austria.
I.H. Franke-Whittle
Universität Innsbruck, Institut für Mikrobiologie, Technikerstraße 25, 6020 Innsbruck, Austria.
S. Haindl
Universität für Bodenkultur Wien, Department IFA-Tulln, Konrad Lorenz Str. 20, 3430 Tulln, Austria.
H. Insam
Universität Innsbruck, Institut für Mikrobiologie, Technikerstraße 25, 6020 Innsbruck, Austria.
R. Braun
Universität für Bodenkultur Wien, Department IFA-Tulln, Konrad Lorenz Str. 20, 3430 Tulln, Austria.

Metrics & Citations


Other Metrics


Cite As

Export Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

1. Valorization of Cow Manure: Unraveling Bacterial Community Changes Driven by Vermicomposting and Their Impact on Vermicompost Tea Production
2. Worm compost tea’s plant growth-promoting power: is it the microorganisms or chemical properties?
3. Fındık Atığı Ürünlerinin Buğday Yetiştiriciliğinde Değerlendirilmesi
4. Potential role of vermicompost and its extracts in alleviating climatic impacts on crop production
5. Biostimulatory effect of vermicompost extract enhances soil mycorrhizal activity and selectively improves crop productivity
6. Interactive effects of deficit irrigation and vermicompost on yield, quality, and irrigation water use efficiency of greenhouse cucumber
7. Organic Amendments: Direct Application and Residual Effects on Vegetative and Reproductive Growth of Hot Pepper
8. Diversity and predicted functional roles of cultivable bacteria in vermicompost: bioprospecting for potential inoculum
9. Combined use of compost, compost tea, and vermicompost tea improves soil properties, and growth, yield, and quality of (Allium cepa L.)
10. Optimal conditions to produce extracts of compost and vermicompost from oil palm and coffee pulp wastes
11. The Effect of Vermicompost Application on Soil Properties in Olive (Olea europaea L. cv. Memecik) Plant
12. An Emerging Organic Fertilizer-Cum-Pest Repellant: Vermicompost Tea
13. Direct Application and Residual Effects of Organic Amendments on Vegetative and Reproductive Growth of Hot Pepper (Capsicum Annuum L.)
14. Effects of Vermicompost Applications on Microelemental Contents of Olive Saplings’ Production Material
15. Compost and Compost Tea Microbiology: The “-Omics” Era
16. Effect of vermicompost tea on rooibos ( Aspalathus linearis ) growth and rhizosphere microbial diversity under field conditions
17. The Effects of the Use of Vermicompost in Olive Tree Farming On Microbiological and Biochemical Characteristics of the Production Material
18. Aerated chicken, cow, and turkey manure extracts differentially affect lettuce and kale yield in hydroponics
19. Disease-Suppressive Effect of Compost Tea Against Phytopathogens in Sustaining Herbal Plant Productivity
20. Humusica 2, article 19: Techno humus systems and global change–conservation agriculture and 4/1000 proposal
21. Assessment of Compost Extract on Yield and Phytochemical Contents of Pak Choi ( Brassica rapa cv. chinensis ) Grown under Different Fertilizer Strategies
22. Effect of Aerated Compost Tea on the Growth Promotion of Lettuce, Soybean, and Sweet Corn in Organic Cultivation
23. Impact of Green Manure and Vermicompost on Soil Suppressiveness, Soil Microbial Populations, and Plant Growth in Conditions of Organic Agriculture of Northern Temperate Climate
24. Effect of freshwater sapropel on plants in respect to its growth-affecting activity and cultivable microorganism content
25. Compost: Its role, mechanism and impact on reducing soil-borne plant diseases
26. Changes in the microbial communities during co-composting of digestates
27. Changes in the Bacterial Community Structure in Stored Wormbed Leachate
28. Critical tests for determination of microbiological quality and biological activity in commercial vermicompost samples of different origins

View Options

Get Access

Login options

Check if you access through your login credentials or your institution to get full access on this article.


Click on the button below to subscribe to Canadian Journal of Microbiology

Purchase options

Purchase this article to get full access to it.

Restore your content access

Enter your email address to restore your content access:

Note: This functionality works only for purchases done as a guest. If you already have an account, log in to access the content to which you are entitled.

View options


View PDF

Full Text

View Full Text





Share Options


Share the article link

Share on social media