Cookies Notification

We use cookies to improve your website experience. To learn about our use of cookies and how you can manage your cookie settings, please see our Cookie Policy.
×

Activation of proteolytic enzymes and depression of the sarcolemmal Na+/K+-ATPase in ischemia–reperfused heart may be mediated through oxidative stress

Publication: Canadian Journal of Physiology and Pharmacology
8 February 2012

Abstract

We tested whether the activation of proteolytic enzymes, calpain, and matrix metalloproteinases (MMPs) during ischemia–reperfusion (I/R) is mediated through oxidative stress. For this purpose, isolated rat hearts were subjected to a 30 min global ischemia followed by a 30 min reperfusion. Cardiac function was monitored and the activities of Na+/K+-ATPase, Mg2+-ATPase, calpain, and MMP were measured. Depression of cardiac function and Na+/K+-ATPase activity in I/R hearts was associated with increased calpain and MMP activities. These alterations owing to I/R were similar to those observed in hearts perfused with hypoxic medium, H2O2 and xanthine plus xanthine oxidase. The I/R-induced changes were attenuated by ischemic preconditioning as well as by perfusing the hearts with N-acetylcysteine or mercaptopropionylglycine. Inhibition of MMP activity in hearts treated with doxycycline depressed the I/R-induced changes in cardiac function and Na+/K+-ATPase activity without affecting the calpain activation. On the other hand, inhibition of calpain activity upon treatment with leupeptin or MDL 28170 significantly reduced the MMP activity in addition to attenuating the I/R-induced alterations in cardiac function and Na+/K+-ATPase activity. These results suggest that the I/R-induced depression in Na+/K+-ATPase and cardiac function may be a consequence of the increased activities of both calpain and MMP because of oxidative stress in the heart.

Résumé

Nous avons vérifié si l’activation d’enzymes protéolytiques, la calpaïne et les métalloprotéases de la matrice (MMP), lors de l’ischémie–reperfusion (I/R) se produit par l’intermédiaire d’un stress oxydant. À cet effet, des cœurs de rats isolés ont été soumis à une ischémie globale de 30 minutes, suivie d’une reperfusion de 30 minutes. La fonction cardiaque a été surveillée et l’activité de la Na+/K+-ATPase, de la Mg2+-ATPase, de la calpaïne et des MMP a été mesurée. La diminution de la fonction cardiaque et de l’activité de la Na+/K+-ATPase dans les cœurs soumis à une I/R a été associée à une augmentation de l’activité de la calpaïne et des MMP. Ces modifications dues à l’I/R étaient similaires à celles observées chez des cœurs perfusés avec un milieu hypoxique, du H2O2 et d’un mélange xanthine et xanthine oxydase. Les changements induits par l’I/R étaient atténués par un préconditionnement ischémique ainsi que par une perfusion des cœurs avec de la N-acétylcystéine ou de la mercaptopropionylglycine. L’inhibition de l’activité des MMP chez les cœurs traités à la doxycycline réduisait l’ampleur des changements induits par l’I/R sur la fonction cardiaque et l’activité de la Na+/K+-ATPase sans affecter l’activation de la calpaïne. D’un autre côté, l’inhibition de l’activité de la calpaïne par un traitement au leupeptine ou au MDL 28170 réduisait l’activité des MMP de façon significative en plus d’atténuer les modifications de la fonction cardiaque et de l’activité de la Na+/K+-ATPase induites par l’I/R. Ces résultats suggèrent que la diminution de l’activité de la Na+/K+-ATPase et de la fonction cardiaque induite par l’I/R peut être une conséquence de l’augmentation de l’activité de la calpaïne et des MMP à cause d’un stress oxydant dans le cœur.

Get full access to this article

View all available purchase options and get full access to this article.

References

Ali M.A. and Schulz R. 2009. Activation of MMP-2 as a key event in oxidative stress injury to the heart. Front. Biosci. 14: 699–716.
Ali M.A., Cho W.J., Hudson B., Kassiri Z., Granzier H., and Schulz R. 2010. Titin is a target of matrix metalloproteinase-2: Implications in myocardial ischemia–reperfusion injury. Circulation, 122(20): 2039–2047.
Bolli R. and Marban E. 1999. Molecular and cellular mechanisms of myocardial stunning. Physiol. Rev. 79(2): 609–634.
Chen M., Won D.J., Krajewski S., and Gottlieb R.A. 2002. Calpain and mitochondria in ischemia/reperfusion injury. J. Biol. Chem. 277(32): 29181–29186.
Cheung P.Y., Sawicki G., Wozniak M., Wang W., Radomski M.W., and Schulz R. 2000. Matrix metalloproteinase-2 contributes to ischemia–reperfusion injury in the heart. Circulation, 101(15): 1833–1839.
Chohan P.K., Singh R.B., Dhalla N.S., and Netticadan T. 2006. l-Arginine administration recovers sarcoplasmic reticulum function in ischemic reperfused hearts by preventing calpain activation. Cardiovasc. Res. 69(1): 152–163.
Chow A.K., Cena J., and Schulz R. 2007. Acute actions and novel targets of matrix metalloproteinases in the heart and vasculature. Br. J. Pharmacol. 152(2): 189–205.
Dhalla N.S., Elmoselhi A.B., Hata T., and Makino N. 2000. Status of myocardial antioxidants in ischemia–reperfusion injury. Cardiovasc. Res. 47(3): 446–456.
Dhalla N.S., Saini H.K., Tappia P.S., Sethi R., Mengi S.A., and Gupta S.K. 2007. Potential role and mechanisms of subcellular remodeling in cardiac dysfunction due to ischemic heart disease. J. Cardiovasc. Med. 8(4): 238–250.
Elmoselhi A.B., Lukas A., Ostadal P., and Dhalla N.S. 2003. Preconditioning attenuates ischemia–reperfusion-induced remodeling of Na+-K+-ATPase in hearts. Am. J. Physiol. Heart Circ. Physiol. 285(3): H1055–H1063.
Felbor U., Dreier L., Bryant R.A., Ploegh H.L., Olsen B.R., and Mothes W. 2000. Secreted cathepsin L generates endostatin from collagen XVIII. EMBO J. 19(6): 1187–1194.
French J.P., Quindry J.C., Falk D.J., Staib J.L., Lee Y., Wang K.K., et al. 2006. Ischemia–reperfusion-induced calpain activation and SERCA2 degradation are attenuated by exercise training and calpain inhibition. Am. J. Physiol. Heart Circ. Physiol. 290(1): H128–H136.
Inserte J., Garcia-Dorado D., Hernando V., and Soler-Soler J. 2005. Calpain-mediated impairment of Na+/K+-ATPase activity during early reperfusion contributes to cell death after myocardial ischemia. Circ. Res. 97(5): 465–473.
Inserte J., Garcia-Dorado D., Hernando V., Barba V., and Soler-Soler J. 2006. Ischemic preconditioning prevents calpain-mediated impairment of Na+/K+-ATPase activity during early reperfusion. Cardiovasc. Res. 70(2): 364–373.
Jennings R.B. and Reimer K.A. 1991. The cell biology of acute myocardial ischemia. Annu. Rev. Med. 42(1): 225–246.
Kandasamy A.D., Chow A.K., Ali M.A., and Schulz R. 2010. Matrix metalloproteinase-2 and myocardial oxidative stress injury: beyond the matrix. Cardiovasc. Res. 85(3): 413–423.
Khalil P.N., Neuhof C., Huss R., Pollhammer M., Khalil M.N., Neuhof H., et al. 2005. Calpain inhibition reduces infarct size and improves global hemodynamics and left ventricular contractility in porcine myocardial ischemia/reperfusion model. Eur. J. Pharmacol. 528(1–3): 124–131.
Lalu M.M., Pasini E., Schulze C.J., Ferrari-Vivaldi M., Ferrari-Vivaldi G., Bachetti T., and Schulz R. 2005. Ischaemia–reperfusion injury activates matrix metalloproteinases in the human heart. Eur. Heart J. 26(1): 27–35.
Leon H., Basczko I., Sawicki G., Light P.E., and Schulz R. 2008. Inhibition of matrix metalloproteinases prevents peroxynitrite-induced contractile dysfunction in the isolated cardiac myocyte. Br. J. Pharmacol. 153(4): 678–683.
Li P.A., Howlett W., He Q.P., Miyashita H., Siddiqui M., and Shuaib A. 1998. Postischemic treatment with calpain inhibitor MDL 28170 ameliorates brain damage in gerbil model of global ischemia. Neurosci. Lett. 247(1): 17–20.
Maciewicz R.A. and Etherington D.J. 1988. A comparison of four cathepsins (B, L, N, and S) with collagenolytic activity from rabbit spleen. Biochem. J. 256(2): 433–440.
Makazan Z., Saini H.K., and Dhalla N.S. 2007. Role of oxidative stress in alterations of mitochondrial function in the ischemic-reperfused hearts. Am. J. Physiol. Heart Circ. Physiol. 292(4): H1986–H1994.
Müller A.L. and Dhalla N.S. 2011. Role of various proteases in cardiac remodeling and progression of heart failure. Heart Fail. Rev. In press.
Ostadal P., Elmoselhi A.B., Zdobnicka I., Lukas A., Elimban V., and Dhalla N.S. 2004. Role of oxidative stress in ischemia–reperfusion-induced changes in Na+/K+-ATPase isoform expression in rat heart. Antioxid. Redox Signal. 6(5): 914–923.
Pedrozo Z., Sánchez G., Torrealba N., Valenzuela R., Fernández C., Hildago C., et al. 2010. Calpains and proteosomes mediate degradation of ryanodine receptors in a model of cardiac ischemic reperfusion. Biochim. Biophys. Acta, 1802(3): 356–362.
Saini H.K. and Dhalla N.S. 2005. Defective calcium handling in cardiomyocytes isolated from hearts subjected to ischemia–reperfusion. Am. J. Physiol. Heart Circ. Physiol. 288(5): H2260–H2270.
Saini H.K., Machackova J., and Dhalla N.S. 2004. Role of reactive oxygen species in ischemic preconditioning of subcellular organelles in the heart. Antioxid. Redox Signal. 6(2): 393–404.
Saini H.K., Elimban V., and Dhalla N.S. 2005. Attenuation of extracellular ATP response in cardiomyocytes isolated from hearts subjected to ischemia–reperfusion. Am. J. Physiol. Heart Circ. Physiol. 289(2): H614–H623.
Sawicki G., Leon H., Sawicka J., Sariahmetoglu M., Schulze C.J., Scott P.G., et al. 2005. Degradation of myosin light chain in isolated rat hearts subjected to ischemia–reperfusion injury: a new intracellular target for matrix metalloproteinases-2. Circulation, 112(4): 544–552.
Schulz R. 2007. Intracellular targets of matrix metalloproteinase-2 in cardiac disease: rationale and therapeutic approaches. Annu. Rev. Pharmacol. Toxicol. 47(1): 211–242.
Schulze C.J., Wang W., Suarez-Pinzon W.L., Sawicka J., Sawicka G., and Schulz R. 2003. Imbalance between tissue inhibitor of metalloproteinase-4 and matrix metalloproteinases during acute myocardial ischemia–reperfusion injury. Circulation, 107(19): 2487–2492.
Singh R.B. and Dhalla N.S. 2010. Ischemia–reperfusion-induced changes in sarcolemmal Na+/K+ ATPase are due to the activation of calpain in the heart. Can. J. Physiol. Pharmacol. 88(3): 388–397.
Singh R.B., Chohan P.K., Dhalla N.S., and Netticadan T. 2004. The sarcoplasmic reticulum proteins are targets for calpain action in the ischemic-reperfused heart. J. Mol. Cell. Cardiol. 37(1): 101–110.
Sorimachi Y., Harada K., Saido T.C., Ono T., Kawashima S., and Yoshida K. 1997. Downregulation of calpastatin in rat heart after brief ischemia and reperfusion. J. Biochem. 122(4): 743–748.
Špániková A., Ivanová M., Matejíková J., Ravingerová T., and Barančík M. 2010. Influence of ischemia/reperfusion and modulation of P13K/Akt kinase pathway in matrix metalloproteinase-2 in rat hearts. Gen. Physiol. Biophys. 29(1): 31–40.
Spinale F.G. 2007. Myocardial matrix remodeling and the matrix metalloproteinases: influence on cardiac form and function. Physiol. Rev. 87(4): 1285–1342.
Spinale F.G. 2010. Amplified bioactive signaling and proteolytic enzymes following ischemia reperfusion and aging: Remodeling pathways that are not like fine wine. Circulation, 122(4): 322–324.
Sung M.M., Schulz C.G., Wang W., Sawicki G., Bautista-Lopez N.L., and Schulz R. 2007. Matrix metalloproteinase-2 degrades the cytoskeletal protein α-actinin in peroxynitrite-mediated myocardial injury. J. Mol. Cell. Cardiol. 43(4): 429–436.
Temsah R.M., Netticadan T., Chapman D., Takeda S., Mochizuki S., and Dhalla N.S. 1999. Alterations in sarcoplasmic reticulum function and gene expression in ischemic-reperfused rat heart. Am. J. Physiol. Heart Circ. Physiol. 277(2): H584–H594.
Temsah R.M., Netticadan T., Kawabata K., and Dhalla N.S. 2002. Lack of both oxygen and glucose contributes to I/R-induced changes in cardiac SR function. Am. J. Physiol. Cell Physiol. 283(4): C1306–C1312.
Urthaler F., Wolkowicz P.E., Digerness S.B., Harris K.D., and Walker A.A. 1997. MDL-28170, a membrane-permeant calpain inhibitor, attenuates stunning and PKCε proteolysis in reperfused ferret hearts. Cardiovasc. Res. 35(1): 60–67.
Wang W., Schulze C.J., Suarez-Pinzon W.L., Dyck J.R., Sawicki G., and Schulz R. 2002. Intracellular action of matrix metalloproteinase-2 accounts for acute myocardial ischemia and reperfusion injury. Circulation, 106(12): 1543–1549.

Information & Authors

Information

Published In

cover image Canadian Journal of Physiology and Pharmacology
Canadian Journal of Physiology and Pharmacology
Volume 90Number 2February 2012
Pages: 249 - 260

History

Received: 30 September 2011
Accepted: 2 December 2011
Version of record online: 8 February 2012

Permissions

Request permissions for this article.

Key Words

  1. ischemia–reperfusion
  2. oxidative stress
  3. calpain activity
  4. matrix metalloproteinase activity
  5. cardiac function
  6. Na+/K+-ATPase activity

Mots-clés

  1. ischémie–reperfusion
  2. stress oxydant
  3. activité de la calpaïne
  4. activité des métalloprotéases de la matrice
  5. fonction cardiaque
  6. activité de la Na+/K+-ATPase

Authors

Affiliations

Raja B. Singh
Institute of Cardiovascular Sciences, St. Boniface Hospital Research, Department of Physiology, Faculty of Medicine, University of Manitoba, Winnipeg, MB R2H 2A6, Canada.
Larry Hryshko
Institute of Cardiovascular Sciences, St. Boniface Hospital Research, Department of Physiology, Faculty of Medicine, University of Manitoba, Winnipeg, MB R2H 2A6, Canada.
Darren Freed
Institute of Cardiovascular Sciences, St. Boniface Hospital Research, Department of Surgery, Faculty of Medicine, University of Manitoba, Winnipeg, MB R2H 2A6, Canada.
Naranjan S. Dhalla
Institute of Cardiovascular Sciences, St. Boniface Hospital Research, Department of Physiology, Faculty of Medicine, University of Manitoba, Winnipeg, MB R2H 2A6, Canada.

Metrics & Citations

Metrics

Other Metrics

Citations

Cite As

Export Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

1. Muscle calcium stress cleaves junctophilin1, unleashing a gene regulatory program predicted to correct glucose dysregulation
2. Role of Oxidative Stress in Cardiac Dysfunction and Subcellular Defects Due to Ischemia-Reperfusion Injury
3. Modification of Ischemia/Reperfusion-Induced Alterations in Subcellular Organelles by Ischemic Preconditioning
4. Interplay of Oxidative Stress and Necrosis-like Cell Death in Cardiac Ischemia/Reperfusion Injury: A Focus on Necroptosis
5. Titin N2A Domain and Its Interactions at the Sarcomere
6. Oxidative Stress as A Mechanism for Functional Alterations in Cardiac Hypertrophy and Heart Failure
7. Verapamil decreases calpain-1 and matrix metalloproteinase-2 activities and improves hypertension-induced hypertrophic cardiac remodeling in rats
8. Myocardial MMP-2 contributes to SERCA2a proteolysis during cardiac ischaemia–reperfusion injury
9. Sodium pump alpha-2 subunit (ATP1A2) alleviates cardiomyocyte anoxia–reoxygenation injury via inhibition of endoplasmic reticulum stress-related apoptosis
10. Functionalized cardiovascular stents: Cardiovascular stents incorporated with stem cells
11. Reperfusion therapy—What’s with the obstructed, leaky and broken capillaries?
12. Sevoflurane postconditioning protects the myocardium against ischemia/reperfusion injury via activation of the JAK2–STAT3 pathway
13. Ischemia/reperfusion-induced alterations of enzymatic and signaling functions of the rat cardiac Na + /K + -ATPase: protection by ouabain preconditioning
14. Prospects for Creation of Cardioprotective Drugs Based on Cannabinoid Receptor Agonists
15. Role of Oxidative Stress in Subcellular Defects in Ischemic Heart Disease
16. Biomarkers for Differential Calpain Activation in Healthy and Diseased Brains: a Systematic Review
17. Emerging roles of junctophilin-2 in the heart and implications for cardiac diseases
18. Targeting MMP-2 to treat ischemic heart injury
19. Ischemic postconditioning: mechanisms, comorbidities, and clinical application
20. The clearance of misfolded proteins in neurodegenerative diseases by zinc metalloproteases: An inorganic perspective
21. Role of Protease Activation in Subcellular Remodeling and Heart Failure
22. Abnormalities in ATP Production and Utilization in Diabetic Cardiomyopathy
23. Matrix Metalloproteinase-2 and Metalloproteinase-9 Activities are Associated with Blood–Brain Barrier Dysfunction in an Animal Model of Severe Sepsis
24. Junctophilins and μ‐calpain: partners in excitation–contraction uncoupling
25. Type 2 ryanodine receptor: A novel therapeutic target in myocardial ischemia/reperfusion
26. Activation of proteases and changes in Na + -K + -ATPase subunits in hearts subjected to ischemia-reperfusion
27. Ca 2+ ‐dependent proteolysis of junctophilin‐1 and junctophilin‐2 in skeletal and cardiac muscle
28. Subcellular Remodeling and Cardiac Dysfunction Due to Ischemia–Reperfusion Injury
29. Involvement of Proteolytic Enzymes in Cardiac Dysfunction Due to Ischemia-Reperfusion Injury
30. Protective effects of adenosine on the diabetic myocardium against ischemia–reperfusion injury: Role of calpain

View Options

Get Access

Login options

Check if you access through your login credentials or your institution to get full access on this article.

Subscribe

Click on the button below to subscribe to Canadian Journal of Physiology and Pharmacology

Purchase options

Purchase this article to get full access to it.

Restore your content access

Enter your email address to restore your content access:

Note: This functionality works only for purchases done as a guest. If you already have an account, log in to access the content to which you are entitled.

View options

PDF

View PDF

Full Text

View Full Text

Media

Media

Other

Tables

Share Options

Share

Share the article link

Share on social media