Cookies Notification

We use cookies to improve your website experience. To learn about our use of cookies and how you can manage your cookie settings, please see our Cookie Policy.
×

The standard energetics of mammalian carnivores: Felidae and Hyaenidae

Publication: Canadian Journal of Zoology
December 2000

Abstract

Data concerning the energy expenditure of nine species in the family Felidae and one species in the family Hyaenidae are presented, all of which were obtained under standard conditions. An examination of basal rates of metabolism in these felids and in two species reported in the literature indicates that basal rate is primarily correlated with body mass; of these species, nine have a high basal metabolic rate by general mammalian standards, the two exceptions being the margay and jaguarundi. The low basal metabolic rate of the margay may be related to its arboreal habit in association with small muscle mass, but the reason for the low rate in the jaguarundi is unknown. The omnivorous striped hyaena and termitivorous aardwolf have typical mammalian basal rates. Felids that weigh less than 7 kg have slightly low minimal thermal conductances relative to mammals generally; larger species have high conductances. Felids have slightly high body temperatures.

Résumé

On trouvera ici des données recueillies dans des conditions classiques sur la dépense énergétique chez neuf espèces de Felidae et une espèce d'Hyaenidae. L'examen du taux de métabolisme de base chez ces félidés et chez deux espèces mentionnées dans la littérature a révélé que le taux de base est surtout relié à la masse totale; parmi ces espèces, neuf ont un taux de métabolisme de base élevé comparativement aux mammifères en général, à l'exception du margay et du jaguarundi. Le taux de métabolisme peu élevé du margay est probablement attribuable à ses moeurs arboricoles et à sa masse musculaire réduite, mais le taux de métabolisme de base peu élevé du jaguarundi n'a pu être expliqué. La Hyène rayée, animal omnivore, et le Protèle, un termitivore, ont des métabolismes de base typiques de mammifères. Les Felidae dont la masse est inférieure à 7 kg ont une conductance thermique minimale légèrement faible; les espèces plus grandes ont une conductance élevée. Chez les Felidae, la température du corps est légèrement élevée.[Traduit par la Rédaction]

Get full access to this article

View all available purchase options and get full access to this article.

Information & Authors

Information

Published In

cover image Canadian Journal of Zoology
Canadian Journal of Zoology
Volume 78Number 12December 2000
Pages: 2227 - 2239

History

Version of record online: 15 February 2011

Permissions

Request permissions for this article.

Authors

Affiliations

Metrics & Citations

Metrics

Other Metrics

Citations

Cite As

Export Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

1. Whispers in the snow: unveiling the spatio-temporal snow leopard (Panthera uncia) territorial marking and cub observations for conservation in Baltistan
2. Influence of abiotic factors on habitat selection of sympatric ocelots and bobcats: testing the interactive range-limit theory
3. Possible spread of SARS-CoV-2 in domestic and wild animals and body temperature role
4. Assessment of behavioral energetics model on Puma concolor using doubly labeled water
5. Seasonal variation in daily activity patterns of snow leopards and their prey
6. Spatial models of jaguar energy expenditure in response to border wall construction and remediation
7. The ecology of cancer prevalence across species: Cancer prevalence is highest in desert species and high trophic levels
8. The comparative energetics of the carnivorans and pangolins
9. Surviving in steep terrain: a lab-to-field assessment of locomotor costs for wild mountain lions (Puma concolor)
10. Effects of sun angle, lunar illumination, and diurnal temperature on temporal movement rates of sympatric ocelots and bobcats in South Texas
11. Tracking cats revisited: Placing terrestrial mammalian carnivores on δ2H and δ18O isoscapes
12. Spatial organization and habitat selection of Geoffroy’s cat in the Espinal of central Argentina
13. Body temperature, activity patterns and hunting in free‐living cheetah: biologging reveals new insights
14. What determines the basal rate of metabolism?
15. Comparative analyses of basal rate of metabolism in mammals: data selection does matter
16. The difficulty with correlations: Energy expenditure and brain mass in bats
17. Metabolic rate of the red panda, Ailurus fulgens, a dietary bamboo specialist
18. Metabolic rates of giant pandas inform conservation strategies
19. Oxygen isotope composition of North American bobcat ( Lynx rufus ) and puma ( Puma concolor ) bone phosphate: implications for provenance and climate reconstruction
20. Winter Is Coming: Seasonal Variation in Resting Metabolic Rate of the European Badger (Meles meles)
21. Face Value: Towards Robust Estimates of Snow Leopard Densities
22. Function
23. Seasonal acclimatization determined by non-invasive measurements of coat insulation
24. Instantaneous energetics of puma kills reveal advantage of felid sneak attacks
25. How large predators manage the cost of hunting
26. Free-swimming northern elephant seals have low field metabolic rates that are sensitive to an increased cost of transport
27. Metabolic Scaling in Animals: Methods, Empirical Results, and Theoretical Explanations
28. Metabolomics of aerobic metabolism in mice selected for increased maximal metabolic rate
29. Tracking Cats: Problems with Placing Feline Carnivores on δ18O, δD Isoscapes
30. Nasal aperture area and body mass in felids: Ecophysiological implications and paleobiological inferences
31. Geographic and temporal correlations of mammalian size reconsidered: a resource rule
32. Causes and significance of variation in mammalian basal metabolism
33. Seasonal energetics of northern phocid seals
34. An analysis of the factors that influence the level and scaling of mammalian BMR
35. The relationship among flow rate, chamber volume and calculated rate of metabolism in vertebrate respirometry
36. Numbats and aardwolves—how low is low? A re-affirmation of the need for statistical rigour in evaluating regression predictions
37. Basal Metabolic Rate in Carnivores Is Associated with Diet after Controlling for Phylogeny
38. The cost of foraging by a marine predator, the Weddell seal Leptonychotes weddellii : pricing by the stroke
39. Short-term energy conservation in endotherms in relation to body mass, habits, and environment

View Options

Login options

Check if you access through your login credentials or your institution to get full access on this article.

Subscribe

Click on the button below to subscribe to Canadian Journal of Zoology

Purchase options

Purchase this article to get full access to it.

Restore your content access

Enter your email address to restore your content access:

Note: This functionality works only for purchases done as a guest. If you already have an account, log in to access the content to which you are entitled.

View options

PDF

View PDF

Figures

Tables

Media

Share Options

Share

Share the article link

Share on social media