Cookies Notification

We use cookies to improve your website experience. To learn about our use of cookies and how you can manage your cookie settings, please see our Cookie Policy.
×
Volume 102 • Number 5 • October 2024

Editorial

OPEN ACCESS
Vol. 102No. 5pp. 346–350
After 20 years of stagnation, federal scholarships have finally been increased within the new budget of the Canadian government. Tuition fees, inflation, and costs of living kept rising, which has resulted a rising number of graduate students in the life sciences living below poverty line, despite working far more than 40 h a week on science research in Canada. This does not only negatively affect the students research projects and thus science and innovation in Canada, but also their downstream decisions on whether to continue a research career in Canada and what jobs and economic endeavors to pursue. Graduate students are not just a line item in the budgets of universities, but integral for science and innovation, as well as the future high-quality personnel of the country. This importance should be reflected in all stipends and salaries of graduate students, not just the ones with a government scholarship.

Review

OPEN ACCESS
Vol. 102No. 5pp. 351–372
Group I and II introns are large catalytic RNAs (ribozymes) that are frequently encountered in fungal mitochondrial genomes. The discovery of respiratory mutants linked to intron splicing defects demonstrated that for the efficient removal of organellar introns there appears to be a requirement of protein splicing factors. These splicing factors can be intron-encoded proteins with maturase activities that usually promote the splicing of the introns that encode them (cis-acting) and/or nuclear-encoded factors that can promote the splicing of a range of different introns (trans-acting). Compared to plants organellar introns, fungal mitochondrial intron splicing is still poorly explored, especially in terms of the synergy of nuclear factors with intron-encoded maturases that has direct impact on splicing through their association with intron RNA. In addition, nuclear-encoded accessory factors might drive the splicing impetus through translational activation, mitoribosome assembly, and phosphorylation-mediated RNA turnover. This review explores protein-assisted splicing of introns by nuclear and mitochondrial-encoded maturases as a means of mitonuclear interplay that could respond to environmental and developmental factors promoting phenotypic adaptation and potentially speciation. It also highlights key evolutionary events that have led to changes in structure and ATP-dependence to accommodate the dual functionality of nuclear and organellar splicing factors.

Research Articles

OPEN ACCESS
Vol. 102No. 5pp. 373–384
Altered mitochondrial structure and function are implicated in the functional decline of skeletal muscle. Numerous cytoskeletal proteins are known to affect mitochondrial homeostasis, but this complex network is still being unraveled. Here, we investigated mitochondrial alterations in mice lacking the cytoskeletal adapter protein, XIN (XIN-/-). XIN-/- and wild-type littermate male and female mice were fed a chow or high-fat diet (HFD; 60% kcal fat) for 8 weeks before analyses of their skeletal muscles were conducted. Immuno-electron microscopy (EM) and immunofluorescence staining revealed XIN in the mitochondria and peri-mitochondrial areas, as well as the myoplasm. Intermyofibrillar mitochondria in chow-fed XIN-/- mice were notably different from wild-type (large, and/or swollen in appearance). Succinate dehydrogenase and Cytochrome Oxidase IV staining indicated greater evidence of mitochondrial enzyme activity in XIN-/- mice. No difference in body mass gains or glucose handling was observed between cohorts with HFD. However, EM revealed significantly greater mitochondrial density with evident structural abnormalities (swelling, reduced cristae density) in XIN-/- mice. Absolute Complex I and II-supported respiration was not different between groups, but relative to mitochondrial density, was significantly lower in XIN-/-. These results provide the first evidence for a role of XIN in maintaining mitochondrial morphology and function.
Vol. 102No. 5pp. 385–393
In atherosclerosis, DNA methylation plays a key regulatory role in the expression of related genes. However, the molecular mechanisms of these processes in human umbilical vein endothelial cells (HUVECs) are unclear. Here, using high-throughput sequencing from the Infinium HumanMethylation450 assay, we manifested that the cg19564375 methylation of miR-520e promoter region in the peripheral blood of acute coronary syndrome (ACS) patients was higher than that of healthy controls. As shown by RQ-MSP, the upstream DNA methylation level of the miR-520e promoter region was considerably increased in ACS patients. miR-520e was markedly downregulated in ACS patients compared with healthy controls. In the oxidized low-density lipoprotein (ox-LDL)-induced HUVECs injury model, DNA methylation of the upstream region of miR-520e was significantly increased. With increasing concentrations of the methylase inhibitor 5-Aza, miR-520e expression was upregulated. The silence of methyltransferase DNMT1, rather than DNMT3a or DNMT3b, abolished the influence of miR-520e expression by ox-LDL treatment in HUVECs. A dual luciferase reporter assay revealed that miR-520e regulated the TGFBR2 3′-untranslated region region. After silencing TGFBR2, the promoting effect of miR-520e inhibitor on cell proliferation and migration may be attenuated. In conclusion, the expression of miR-520e is modified by its promoter region DNA methylation, and miR-520e and its promoter region DNA methylation may be potential biomarkers in atherosclerosis.
Vol. 102No. 5pp. 394–409
Ovarian cancer (OC) is the deadliest gynecological malignancy, having a high mortality rate due to its asymptomatic nature, chemoresistance, and recurrence. However, the proper mechanistic knowledge behind these phenomena is still inadequate. Cancer recurrence is commonly observed due to cancer stem cells which also show chemoresistance. We aimed to decipher the molecular mechanism behind chemoresistance and stemness in OC. Earlier studies suggested that PITX2, a homeobox transcription factor and, its different isoforms are associated with OC progression upon regulating different signaling pathways. Moreover, they regulate the expression of drug efflux transporters in kidney and colon cancer, rendering chemoresistance properties in the tumor cell. Considering these backgrounds, we decided to look for the role of PITX2 isoforms in promoting stemness and chemoresistance in OC cells. In this study, PITX2A/B has been shown to promote stemness and to enhance the transcription of ABCB1. PITX2 has been discovered to augment ABCB1 gene expression by directly binding to its promoter. To further investigate the regulatory mechanism of PITX2 gene expression, we found that TGFβ signaling could augment the PITX2A/B expression through both SMAD and non-SMAD signaling pathways. Collectively, we conclude that TGFβ1-activated PITX2A/B induces stem-like features and chemoresistance properties in the OC cells.
Vol. 102No. 5pp. 410–417
Ferritin (Ftn), a globular protein, sequesters 4500 atoms of iron per molecule. Elevated serum Ftn levels (hyperferritinemia) is an indicator of iron homeostasis disorders. We present the results of an observational study involving 17 patients with hyperferritinemia unrelated to hereditary hemochromatosis (HH). All participants received treatment with 200 mg of bovine lactoferrin (bLf) once (n = 14) or twice (n = 3) a day before meals. The patients, treated with 200 mg/day of bLf, exhibited a significant increase in red blood cells (+10%, p < 0.001), hemoglobin (+4%, p < 0.001), and hematocrit (+15%, p = 0.004), accompanied by a significant reduction in serum Ftn levels (−52%, p < 0.001), C-reactive protein (CRP) (−85.0%, p < 0.001), and D-dimers (−19%, p < 0.001). Among the three patients treated with 400 mg/day of bLf, two had effects similar to those of patients bLf-treated with 200 mg/day and one experienced a strong reduction of Ftn, CRP, and erythrocyte sedimentation rate (from −97% to −75%). The decrease in serum Ftn levels due to bLf treatment was largely independent of gender (p = 0.78), age (p = 0.66), baseline symptoms (p = 0.20), and concomitant acute (p = 0.34) and chronic (p = 0.53) infections. Although this observational pilot study yields positive effects in patients with hyperferritinemia unrelated to HH treated with bLf, a larger sample size is needed for conclusive results.
List of Issues
Volume 102
Issue 5
October 2024
Volume 102
Issue 4
August 2024
Volume 102
Issue 3
June 2024
Volume 102
Issue 2
April 2024
Volume 102
Issue 1
February 2024
Volume 101
Issue 6 (Suppl. 1)
December 2023