Cookies Notification

We use cookies to improve your website experience. To learn about our use of cookies and how you can manage your cookie settings, please see our Cookie Policy.
Volume 66 • Number 7 • July 2023


FREE ACCESSEditor's choice
Vol. 66No. 7pp. 165–174
Macroptilium (Benth.) Urb. is a neotropical legume genus from the subtribe Phaseolinae. The investigated species present a stable chromosome number (2n = 22), but differ in their karyotype formulae, suggesting the presence of chromosome rearrangements. In this work, we comparatively analysed the karyotypes of six species (Macroptilium atropurpureum, Macroptilium bracteatum, Macroptilium erythroloma, Macroptilium gracile, Macroptilium lathyroides, and Macroptilium martii) from the two main clades that form the genus. Heterochromatin distribution was investigated with chromomycin A3 (CMA)/4′,6-diamidino-2-phenylindole (DAPI) staining and fluorescent in situ hybridization was used to localize the 5S and 35S ribosomal DNA (rDNA) sites. Single copy bacterial artificial chromosomes (BACs) previously mapped in the related genera Phaseolus L. and Vigna Savi were used to establish chromosome orthologies and to investigate possible rearrangements among species. CMA+/DAPI bands were observed, mostly associated with rDNA sites. Additional weak, pericentromeric bands were observed on several chromosomes. Although karyotypes were similar, species could be differentiated mainly by the number and position of the 5S and 35S rDNA sites. BAC markers demonstrated conserved synteny of the main rDNA sites on orthologous chromosomes 6 and 10, as previously observed for Phaseolus and Vigna. The karyotypes of the six species could be differentiated, shedding light on its karyotype evolution.
Vol. 66No. 7pp. 175–192
The North American (NA) Atlantic salmon typically has 27 pairs of chromosomes, whereas the European (EU) subspecies typically has 29. We investigated within-family recombination within three previously identified chromosome rearrangements (Ssa01p/23, Ssa08/29, and Ssa26/28) in NA Atlantic salmon by creating high-density linkage maps using a custom 50K SNP chip developed for the Saint John River aquaculture strain. Linkage maps created for individual purebred and EU hybrid parents in 10 full-sibling families averaged 14 337 SNPs per cross, covering 43 033 SNPs from the 50K SNP chip. Chromosomal translocation Ssa01p/23 was fixed except in one hybrid female map. In contrast, fusion Ssa08/29 was present in maps in 4 out of 10 females and 8 out of 10 males, whereas fusion Ssa26/28 was present in maps in 6 out of 10 females and 8 out of 10 males. The orientation of Ssa08/29 differed from the previous map; the short arm of the metacentric Ssa08 was fused to the centromere of the acrocentric Ssa29. We detected large regions of recombination suppression in female maps at the fusion of Ssa08 to Ssa29. This suppression may reduce the impacts of aneuploidy resulting from pairing of fused and unfused chromosomes, thereby allowing the persistence of chromosomal polymorphisms in this population.
Vol. 66No. 7pp. 193–201
Genome size evolution is known to be related with transposable elements, yet such relation in incipient species remains poorly understood. For decades, the willistoni subgroup of Drosophila has been a model for evolutionary studies because of the different evolutionary stages and degrees of reproductive isolation its species present. Our main question here was how speciation influences genome size evolution and the fraction of repetitive elements, with a focus on transposable elements. We quantitatively compared the mobilome of four species and two subspecies belonging to this subgroup with their genome size, and performed comparative phylogenetic analyses. Our results showed that genome size and the fraction of repetitive elements evolved according to the evolutionary history of these species, but the content of transposable elements showed some discrepancies. Signals of recent transposition events were detected for different superfamilies. Their low genomic GC content suggests that in these species transposable element mobilization might be facilitated by relaxed natural selection. Additionally, a possible role of the superfamily DNA/TcMar-Tigger in the expansion of these genomes was also detected. We hypothesize that the undergoing process of speciation could be promoting the observed increase in the fraction of repetitive elements and, consequently, genome size.
List of Issues
Volume 67
Issue 2
February 2024
Volume 67
Issue 1
January 2024
Volume 66
Issue 12
December 2023
Volume 66
Issue 11
November 2023
Volume 66
Issue 10
October 2023
Volume 66
Issue 9
September 2023